You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The book provides a survey of numerical methods for acoustics, namely the finite element method (FEM) and the boundary element method (BEM). It is the first book summarizing FEM and BEM (and optimization) for acoustics. The book shows that both methods can be effectively used for many other cases, FEM even for open domains and BEM for closed ones. Emphasis of the book is put on numerical aspects and on treatment of the exterior problem in acoustics, i.e. noise radiation.
This book contains 67 papers presented at ICTCA2001. It includes three keynote addresses surveying the frontier developments in computational and theoretical acoustics. The papers cover aero-, seismo- and ocean acoustics, as well as ultrasonics. Computational methods, numerical simulation, theoretical analysis and experimental results are emphasized by different papers.The proceedings have been selected for coverage in: Index to Scientific & Technical Proceedings (ISTP CDROM version / ISI Proceedings)
This edited volume offers a state of the art overview of fast and robust solvers for the Helmholtz equation. The book consists of three parts: new developments and analysis in Helmholtz solvers, practical methods and implementations of Helmholtz solvers, and industrial applications. The Helmholtz equation appears in a wide range of science and engineering disciplines in which wave propagation is modeled. Examples are: seismic inversion, ultrasone medical imaging, sonar detection of submarines, waves in harbours and many more. The partial differential equation looks simple but is hard to solve. In order to approximate the solution of the problem numerical methods are needed. First a discretiz...
None
None
None