You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
An accurate quantitative picture of electric field distribution is essential in many electrical and electronic applications. In composite dielectric configurations composed of multiple dielectrics, anomalous or unexpected behavior of electric fields may appear when a solid dielectric is in contact with a conductor or another solid dielectric. The electric field near the contact point may become higher than the original field not only in the surrounding medium but also in the solid dielectric. Theoretically it may become infinitely high, depending on the contact angle. Although these characteristics are very important in a variety of applications, they have been clarified only recently using ...
This book aims at making readers develop a better understanding of electrostatic fields using the form of problems and puzzles (summarized as “questions” hereafter) and answers, instead of tedious explanations in ordinary textbooks. The book is filled with the questions with unexpected answers and questions often misunderstood or rarely completely understood, most of which are original. The questions in the book look simple and very easy to answer at a glance; nevertheless, once students try to solve them, they will find that the questions are really tough nuts to crack. Teachers can also use the questions in the book in their classes. Not only from an academic or an educational point of...
Lists for 19 include the Mathematical Association of America, and 1955- also the Society for Industrial and Applied Mathematics.
None
This book is part of a two-volume work that offers a unique blend of information on realistic evaluations of catalyst-based synthesis processes using green chemistry principles and the environmental sustainability applications of such processes for biomass conversion, refining, and petrochemical production. The volumes provide a comprehensive resource of state-of-the-art technologies and green chemistry methodologies from researchers, academics, and chemical and manufacturing industrial scientists. The work will be of interest to professors, researchers, and practitioners in clean energy catalysis, green chemistry, chemical engineering and manufacturing, and environmental sustainability. Thi...
The focus of this book is on the interactions of small particles, in the size range of microns to millimeters, with electric or magnetic fields. This field has particularly useful practical applications, for instance in photocopier technology and lately in the characterization and manipulation of cells and DNA molecules. The author's objective is to bring together diverse examples of field-particle interactions from many areas of science and technology and then to provide a framework for understanding their common electromechanical phenomena. Using examples from dielectrophoresis, magnetic brush xerography, electrorheology, cell electrorotation, and particle chain rotation, Professor Jones introduces a general model--the effective dipole method--to build a set of predictive models for the forces and torques responsible for the important electromechanical effects. In the last part of the book, the author covers the ubiquitous phenomenon of particle chaining. This book will be highly useful to material engineers and scientists, chemists, and biologists who work with particles, powders, or granular materials.
Inspired by a new revival of worldwide interest in extra-high-voltage (EHV) and ultra-high-voltage (UHV) transmission, High Voltage Engineering merges the latest research with the extensive experience of the best in the field to deliver a comprehensive treatment of electrical insulation systems for the next generation of utility engineers and electric power professionals. The book offers extensive coverage of the physical basis of high-voltage engineering, from insulation stress and strength to lightning attachment and protection and beyond. Presenting information critical to the design, selection, testing, maintenance, and operation of a myriad of high-voltage power equipment, this must-hav...
Biologists, physicists and engineers are working together to make ever-smaller devices capable of studying the properties of tiny biological particles. Using nano-electrodes, encapsulated in a device with dimensions of a few hundred millionths of a metre, it is now possible to manipulate and trap single nano-scale biological particles such as a virus. The precisely controlled electric fields generated within the device can be used to trap single particles in field-cages or separate different viruses from each other, for example. This book is an introduction to the science behind the new technology, and explains how the electric field interacts with the particles. It describes how these micro-systems are manufactured and how they are used to study the electrical properties of the particles.
This book summarizes the various microfluidic-based approaches for single-cell capture, isolation, manipulation, culture and observation, lysis, and analysis. Single-cell analysis reveals the heterogeneities in morphology, functions, composition, and genetic performance of seemingly identical cells, and advances in single-cell analysis can overcome the difficulties arising due to cell heterogeneity in the diagnostics for a targeted model of disease. This book provides a detailed review of the state-of-the-art techniques presenting the pros and cons of each of these methods. It also offers lessons learned and tips from front-line investigators to help researchers overcome bottlenecks in their...
Innovative Technologies for Food Preservation: Inactivation of Spoilage and Pathogenic Microorganisms covers the latest advances in non-thermal processing, including mechanical processes (such as high pressure processing, high pressure homogenization, high hydrodynamic pressure processing, pressurized fluids); electromagnetic technologies (like pulsed electric fields, high voltage electrical discharges, Ohmic heating, chemical electrolysis, microwaves, radiofrequency, cold plasma, UV-light); acoustic technologies (ultrasound, shockwaves); innovative chemical processing technologies (ozone, chlorine dioxide, electrolysis, oxidized water) and others like membrane filtration and dense phase CO2...