You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book provides essential insights into microbial pathogenesis, host-pathogen interactions, and the anti-microbial drug resistance of various human pathogens on the basis of various model organisms. The initial sections of the book introduce readers to the mechanisms of microbial pathogenesis, host-pathogen interactions, anti-microbial drug resistance, and the dynamics of biofilm formation. Due to the emergence of various microbial resistant strains, it is especially important to understand the prognosis for microbial infections, disease progression profiles, and mechanisms of resistance to antibiotic therapy in order to develop novel therapeutic strategies. In turn, the second part of the book presents a comparative analysis of various animal models to help readers understand microbial pathogenesis, host-pathogen interactions, anti-microbial drug discovery, anti-biofilm therapeutics, and treatment regimes. Given its scope, the book represents a valuable asset for microbiologists, biotechnologists, medical professionals, drug development researchers, and pharmacologists alike.
This book is first part of the 3 volume set focusing on basic and advanced methods for using microbiology as an entrepreneurial venture. This volume explains the entrepreneurship skills for production, cost-benefit analysis and marketing of bio-fertilizers, bio-pesticides, bio-insecticides, seaweed liquid biofertilizer, and phosphate solubilizers. Chapters cover the applications of microorganisms in small and large scale production to achieve a sustainable output. The book provides essential knowledge and working business protocols from all related disciplines in agribusiness, organic farming, and economic integration. This book is useful to graduate students, research scholars and postdoctoral fellows, and teachers who belong to different disciplines via Botany, Agriculture, Environmental Microbiology and Biotechnology, Plant Pathology, and Horticulture. Next two volumes are focused on food and industrial microbiology.
Microbial Nanobionics: Volume 2, Basic Research Applications continues the important discussion of microbial nanoparticle synthesis with a focus on the mechanistic approach of biosynthesis towards nanobionics. This volume also explores the toxicity of nanomaterials in microbes and their effect on human health and the environment. Special Emphasis is given to the use of polymeric nanomaterials in smart packing for the food industry and agricultural sector. The future of nanomaterials for detection of soil microbes and their interactions and tools for environmental remedies is also comprehensively covered. The rich biodiversity of microbes make them excellent candidates for potential nanoparti...
Microbes in Land Use Change Management details the various roles of microbial resources in management of land uses and how the microbes can be used for the source of income due to their cultivation for the purpose of biomass and bioenergy production. Using various techniques, the disturbed and marginal lands may also be restored eco-friendly in present era to fulfil the feeding needs of mankind around the globe. Microbes in Land Use Change Management provides standard and up to date information towards the land use change management using various microbial technologies to enhance the productivity of agriculture. Needless to say that Microbes in Land Use Change Management also considers the a...
White biotechnology, or industrial biotechnology as it is also known, refers to the use of living cells and/or their enzymes to create industrial products that are more easily degradable, require less energy, create less waste during production and sometimes perform better than products created using traditional chemical processes. Over the last decade considerable progress has been made in white biotechnology research, and further major scientific and technological breakthroughs are expected in the future. Fungi are ubiquitous in nature and have been sorted out from different habitats, including extreme environments (high temperature, low temperature, salinity and pH), and may be associated...
Synopsis - about 500 words (to enable the cover designer to understand the theme of the book and would not be printed on the book) Chapter I consists of the fundamentals of nanotechnology, properties of semiconductor oxide materials and its applications. Chapter II deals with the literature survey of different preparation methods of Cadmium Oxide nanoparticles. Also, the objectives and the significant of the present method of synthesis are explained. Chapter III presents the green synthesis procedure of CdO nanoparticles. The characterization techniques like XRD, UV-DRS, PL, FT-IR, FE-SEM, EDAX, HR-TEM are used to analyze the bare and different extract mediated synthesis of CdO nanoparticles...
Fungal nanotechnology has great prospects for developing new products with industrial, agricultural, medicinal, and consumer applications in a wide range of sectors. The fields of chemical engineering, agri-food, biochemistry, pharmaceuticals, diagnostics, and medical device development all employ fungal products, with fungal nanomaterials currently used in applications ranging from drug development to the food industry and agricultural biotechnology. Fungal agents are an environmentally friendly, clean, nonâtoxic agent for the synthesis of metal nanoparticles and employ both intracellular and extracellular methods. The simplicity of scaling up and downstream processing and the presence of...
This book explores recent advances on the use of microbes for agri-forestry biotechnological applications. It provides technical concepts and discussions on the use of microorganisms for processes such as bioprocessing, bioremediation, soil enhancement, aquaponics advances, and plant-host symbiosis. The book provides an overview of the microbial approach to the tools and processes used in agriculture and forestry that make or modify products, improve plants for specific uses, and make use of livestock in agricultural systems. The authors discuss the main process conditions that enhance agri-forestry applications with the use of microbes and introduce the use of genetically modified (GM) microbes in agrobiotechnology. Finally, the authors explore the main technological advances in the production of secondary metabolites with potential applications in agri-forestry. This book is intended for biotechnologists, biologists, bioengineers, biochemists, microbiologists, food technologists, enzymologists, and related researchers.
This book provides a comprehensive overview of state-of-the-art applications of nanotechnology in biology and medicine, as well as model organisms that can help us understand the biological activity and associated toxicity of nanoparticles, and devise strategies to minimize toxicity and enhance therapies. Thanks to their high surface-to-volume ratio, nanoparticles are characterized by excellent biocompatibility and bioavailability, a high therapeutic index, and relatively low toxicity, which has led to their widespread application in the early diagnosis of diseases, comprehensive monitoring of disease progression, and improved therapeutics. The book also explores nanoparticle-based insecticides and their mechanisms of action, and provides a comparative analysis of the various model organisms that are used to understand the biological properties of nanoparticles. Further, it describes various in-vivo models that yield important insights into nanomaterial-mediated toxicity, promoting the optimal utilization of nanoparticles. In closing, the book discusses future perspectives and regulatory issues concerning the use of nanomaterials in translational research.
In the pursuit of technological advancement in the field of biotechnology and pharmaceutical industries to counteract health issues, bacterial infections remain a major cause of morbidity and mortality. The ability of bacterial pathogens to form biofilms further agglomerates the situation by showing resistance to conventional antibiotics. To overcome this serious issue, bioactive metabolites and other natural products were exploited to combat bacterial infections and biofilm-related health consequences. Natural products exhibited promising results in vitro, however; their efficacy in in vivo conditions remain obscured due to their low-solubility, bioavailability, and biocompatibility issues....