You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume contains selected papers presented at the 42nd Biennial Meeting of the Kolloid-Gesellschaft held at the RWTH Aachen University September 26-28, 2005. The contributions in this volume represent the diversity of research topics in colloid and polymer science. They include the investigation of synthesis and properties of advanced temperature sensitive particles and their biomedical applications, drug delivery systems, foams, capsules, vesicles and gels, polyelectrolytes, nanoparticles surfactants and hybrid materials.
All living organisms consist of soft matter. For this reason alone, it is important to be able to understand and predict the structural and dynamical properties of soft materials such as polymers, surfactants, colloids, granular matter and liquids crystals. To achieve a better understanding of soft matter, three different approaches have to be integrated: experiment, theory and simulation. This book focuses on the third approach — but always in the context of the other two.
The behaviour of many complex materials extends over time- and lengthscales well beyond those that can normally be described using standard molecular dynamics or Monte Carlo simulation techniques. As progress is coming more through refined simulation methods than from increased computer power, this volume is intended as both an introduction and a review of all relevant modern methods that will shape molecular simulation in the forthcoming decade. Written as a set of tutorial reviews, the book will be of use to specialists and nonspecialists alike.
Providing a vital link between chemistry and physics on the nanoscale, this book offers concise coverage of the entire topic in five major sections, beginning with synthesis of microgel particles and continuing with their physical properties. The phase behavior and dynamics of resulting microgel suspensions feature in the third section, followed by their mechanical properties. It concludes with detailed accounts of numerous industrial, commercial and medical applications. Edited by David Weitz, Professor at Harvard and one of the world's pre-eminent experts in the field.
This extensive and comprehensive collection of lectures by world-leading experts in the field introduces and reviews all relevant computer simulation methods and their applications in condensed matter systems. Volume 2 offers surveys on numerical experiments carried out for a great number of systems, ranging from materials sciences to chemical biology, including supercooled liquids, spin glasses, colloids, polymers, liquid crystals, biological membranes and folding proteins.
Colloids are systems comprised of particles of mesoscopic size suspended in a liquid. They have recently been attracting increased attention from scientists and engineers due to the fact that they are nowadays present in many industrial products such as paints, oil additives, electronic ink displays and drugs. Colloids also serve as versatile model systems for phenomena and structures from solid-state physics, surface science and statistical mechanics, and can easily be studied using tabletop experiments to provide insight into processes not readily accessible in atomic systems. This book presents the lectures delivered at the 2012 Enrico Fermi School ‘Physics of Complex Colloids’, held in Varenna, Italy, in July 2012. The school addressed experimental, theoretical and numerical results and methods, and the lectures covered a broad spectrum of topics from the starting point of the synthesis of colloids and their use in commercial products. The lectures review the state-of-the-art of colloidal science in a pedagogical way, discussing both the basics and the latest results, and this book will serve as a reference for both students and experts in this rapidly growing field.
This unique text discusses the solution self-assembly of block copolymers and covers all aspects from basic physical chemistry to applications in soft nanotechnology. Recent advances have enabled the preparation of new materials with novel self-assembling structures, functionality and responsiveness and there have also been concomitant advances in theory and modelling. The present text covers the principles of self-assembly in both dilute and concentrated solution, for example micellization and mesophase formation, etc., in chapters 2 and 3 respectively. Chapter 4 covers polyelectrolyte block copolymers - these materials are attracting significant attention from researchers and a solid basis...
This book provides in-depth insights into assembling dynamics of proteins, DNA and other nanoparticles. The applications of basic knowledge in the development of artificial self-assembling systems will be discussed and state of the art methodology in the field will be presented.This interdisciplinary work brings together aspects of different fields of expertise such as Biology, Physics and Material Sciences and is intended for researchers, professors and graduate students interested in the design of self-assembling materials.
Perturbation theory forms an important basis for predicting the thermodynamic characteristics of real fluids and solids. This book provides a comprehensive review of current perturbation theories-as well as integral equation theories and density functional theories-for the equilibrium thermodynamic and structural properties of classical systems. Emphasizing practical applications, the book avoids complex theoretical derivations as much as possible. Appropriate for experienced researchers as well as postgraduate students, the text presents a wide-ranging yet detailed view and provides a useful guide to the application of the theories described.