You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The computer recognition systems are nowadays one of the most promising directions in artificial intelligence. This book is the most comprehensive study of this field. It contains a collection of 78 carefully selected articles contributed by experts of pattern recognition. It reports on current research with respect to both methodology and applications. In particular, it includes the following sections: Biometrics, Features, learning and classifiers, Image processing and computer vision, Knowledge acquisition based on reasoning methods Medical applications, Miscellaneous applications, This book is a great reference tool for scientists who deal with the problems of designing computer pattern recognition systems. Its target readers can be as well researchers as students of computer science, artificial intelligence or robotics.
The rapid development in the area of sensor technology has been responsible for a number of societal phenomena like UGC (User Generated Content) or QS (Quantified Self). Machine learning algorithms benefit a lot from the availability of such huge volumes of digital data. For example, new technical solutions for challenges caused by the demographic change (ageing society) can be proposed in this way, especially in the context of healthcare systems in industrialised countries. The goal of this book is to present selected algorithms for Visual Scene Analysis (VSA, processing UGC) as well as for Human Data Interpretation (HDI, using data produced within the QS movement) and to expose a joint methodological basis between these two scientific directions. While VSA approaches have reached impressive robustness towards human-like interpretation of visual sensor data, HDI methods are still of limited semantic abstraction power. Using selected state-of-the-art examples, this book shows the maturity of approaches towards closing the semantic gap in both areas, VSA and HDI.
This book presents an interdisciplinary selection of cutting-edge research on RGB-D based computer vision. Features: discusses the calibration of color and depth cameras, the reduction of noise on depth maps and methods for capturing human performance in 3D; reviews a selection of applications which use RGB-D information to reconstruct human figures, evaluate energy consumption and obtain accurate action classification; presents an approach for 3D object retrieval and for the reconstruction of gas flow from multiple Kinect cameras; describes an RGB-D computer vision system designed to assist the visually impaired and another for smart-environment sensing to assist elderly and disabled people; examines the effective features that characterize static hand poses and introduces a unified framework to enforce both temporal and spatial constraints for hand parsing; proposes a new classifier architecture for real-time hand pose recognition and a novel hand segmentation and gesture recognition system.
In this dissertation, novel Content-based Microscopic Image Analysis (CBMIA) methods, including Weakly Supervised Learning (WSL), are proposed to aid biological studies. In a CBMIA task, noisy image, image rotation, and object recognition problems need to be addressed. To this end, the first approach is a general supervised learning method, which consists of image segmentation, shape feature extraction, classification, and feature fusion, leading to a semi-automatic approach. In contrast, the second approach is a WSL method, which contains Sparse Coding (SC) feature extraction, classification, and feature fusion, leading to a full-automatic approach. In this WSL approach, the problems of noisy image and object recognition are jointly resolved by a region-based classifier, and the image rotation problem is figured out through SC features. To demonstrate the usefulness and potential of the proposed methods, experiments are implemented on di erent practical biological tasks, including environmental microorganism classification, stem cell analysis, and insect tracking.
New computerized approaches to various problems have become critically important in healthcare. Computer assisted diagnosis has been extended towards a support of the clinical treatment. Mathematical information analysis, computer applications have become standard tools underpinning the current rapid progress with developing Computational Intelligence. A computerized support in the analysis of patient information and implementation of a computer aided diagnosis and treatment systems, increases the objectivity of the analysis and speeds up the response to pathological changes. This book presents a variety of state-of-the-art information technology and its applications to the networked environ...
The present dissertation addresses the problem of extracting 3D trajectories of objects from 2D videos. The reason of this is the theory that these trajectories symbolise high-level interpretations of human activities. A 3D trajectory of an object means its sequential positions in the real world over time. To this end, a generic framework for detecting objects and extracting their trajectories is proposed. In simpler terms, it means obtaining the 3D coordinate of the objects detected on the image plane and then tracking them in the real world to extract their 3D trajectories. Lastly, this dissertation presents applications of trajectory analysis to understand human activities in crowded environments. In this context, each phase in the framework represents independent approaches dedicated to solving challenging tasks in computer vision and multimedia.
The five-volume set LNCS 9003--9007 constitutes the thoroughly refereed post-conference proceedings of the 12th Asian Conference on Computer Vision, ACCV 2014, held in Singapore, Singapore, in November 2014. The total of 227 contributions presented in these volumes was carefully reviewed and selected from 814 submissions. The papers are organized in topical sections on recognition; 3D vision; low-level vision and features; segmentation; face and gesture, tracking; stereo, physics, video and events; and poster sessions 1-3.
The computer recognition systems are nowadays one of the most promising directions in artificial intelligence. This book is the most comprehensive study of this field. It contains a collection of 86 carefully selected articles contributed by experts of pattern recognition. It reports on current research with respect to both methodology and applications. In particular, it includes the following sections: Biometrics Data Stream Classification and Big Data Analytics Features, learning, and classifiers Image processing and computer vision Medical applications Miscellaneous applications Pattern recognition and image processing in robotics Speech and word recognition This book is a great reference tool for scientists who deal with the problems of designing computer pattern recognition systems. Its target readers can be the as well researchers as students of computer science, artificial intelligence or robotics.
Cardiovascular disease has become the number one cause of death worldwide. For the diagnosis and therapy of coronary artery disease, interventional C-arm-based fluoroscopy is an imaging method of choice. While these C-arm systems are also capable of rotating around the patient and thus allow a CT-like 3-D image reconstruction, their long rotation time of about five seconds leads to strong motion artefacts in 3-D coronary artery imaging. In this work, a novel method is introduced that is based on a 2-D-2-D image registration algorithm. It is embedded in an iterative algorithm for motion estimation and compensation and does not require any complex segmentation or user interaction. It is thus fully automatic, which is a very desirable feature for interventional applications. The method is evaluated on simulated and human clinical data. Overall, it could be shown that the method can be successfully applied to a large set of clinical data without user interaction or parameter changes, and with a high robustness against initial 3-D image quality, while delivering results that are at least up to the current state of the art, and better in many cases.
None