You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
With the increased presence of nanomaterials in commercial products such as cosmetics and sunscreens, fillers in dental fillings, water filtration process, catalysis, photovoltaic cells, bio-detection, a growing public debate is emerging on toxicological and environmental effects of direct and indirect exposure to these materials. Nanomaterials: A Danger or a Promise? forms a balanced overview of the health and environmental issues of nanoscale materials. By considering both the benefits and risks associated with nanomaterials, Nanomaterials: A Danger or a Promise? compiles a complete and detailed image of the many aspects of the interface between nanomaterials and their real-life applicatio...
This book features a special subsection of Nanomedicine, an application of nanotechnology to achieve breakthroughs in healthcare. It exploits the improved and often novel physical, chemical and biological properties of materials only existent at the nanometer scale. As a consequence of small scale, nanosystems in most cases are efficiently uptaken by cells and appear to act at the intracellular level. Nanotechnology has the potential to improve diagnosis, treatment and follow-up of diseases, and includes targeted drug delivery and regenerative medicine; it creates new tools and methods that impact significantly upon existing conservative practices. This volume is a collection of authoritativ...
This volume serves as a valuable handbook for the development of nanomedicines made of polymer nanoparticles because it provides researchers, students, and entrepreneurs with all the material necessary to begin their own projects in this field. Readers will find protocols to prepare polymer nanoparticles using different methods, since these are based on the variety of experiences that experts encounter in the field. In addition, complex topics such as, the optimal characterization of polymer nanoparticles is discussed, as well as practical guidelines on how to formulate polymer nanoparticles into nanomedicines, and how to modify the properties of nanoparticles to give them the different functionalities required to become an efficient nanomedicine for different clinical applications. The book also discusses the translation of technology from research to practice, considering aspects related to industrialization of preparation and aspects of regulatory and clinical development.
An examination of the widespread application of nano materials in biology, medicine, and pharmaceuticals and the accompanying safety concerns, Bio-interactions of Nano Materials addresses the issues related to toxicity and safety of nano materials and nano systems. It covers the interactions in biological systems and presents various tools and meth
NanoFormulation covers advances in research, development and applications of innovative formulation technologies where nanomaterials play an essential role.
Understanding the importance of nanosciences in diabetes is problematic as some texts can be too technical for the novice. This book uses a reader–friendly format suitable not only for practitioners but newcomers as well. It begins with general aspects of nanotechnology and nanomedicine in diabetes. It then discusses glucose and glucose sensors based on functional nanocomposites before moving on to a discussion of insulin and the use of nanoprobes to monitor cell processes in the pancreas. Finally, it explores drugs and other treatments, including second-generation sulfonylurea glipizide loaded biodegradable nanoparticles and nanoparticle-mediated delivery of angiogenic inhibitors in diabetic retinopathy.
Nanomaterials have supported humankind’s advancement, becoming one of the most important industry sectors, and are expected to rise to the top by 2030. However, significant challenges must be overcome, such as the performance and efficiency of the material under different environmental conditions. This book seeks to promote a critical view on using nanomaterials under extreme conditions found in our body, planet, and outer space. Therefore, nanomaterials are covered from multiple points of view, allowing the reader to get an enriching presentation of current knowledge on nanomaterials, limitations, advancements, and applications under extreme conditions.
Colloidal Biomolecules, Biomaterials, and Biomedical Applications is an authoritative presentation of established and recent techniques promising to revolutionize the areas of biomedical diagnostics, therapeutics, pharmaceutics, and drug delivery. This exceptional book details an original homogeneous assay for biomolecule detection and capture through duplex colloid particles, as well as new methods for utilizing peptides in particle agglutination. Featuring contributions from over 30 prominent researchers, it investigates physical studies of the agglutination of sensitive latexes, and indicates benefits to drug delivery through supercritical fluid process production of polymer particles.
A practical overview of a full rangeof approaches to discovering, selecting, and producing biotechnology-derived drugs The Handbook of Pharmaceutical Biotechnology helps pharmaceutical scientists develop biotech drugs through a comprehensive framework that spans the process from discovery, development, and manufacturing through validation and registration. With chapters written by leading practitioners in their specialty areas, this reference: Provides an overview of biotechnology used in the drug development process Covers extensive applications, plus regulations and validation methods Features fifty chapters covering all the major approaches to the challenge of identifying, producing, and formulating new biologically derived therapeutics With its unparalleled breadth of topics and approaches, this handbook is a core reference for pharmaceutical scientists, including development researchers, toxicologists, biochemists, molecular biologists, cell biologists, immunologists, and formulation chemists. It is also a great resource for quality assurance/assessment/control managers, biotechnology technicians, and others in the biotech industry.
Drug delivery is a term that refers to the delivery of a pharmaceutical compound to humans or animals. Most common methods of delivery include the preferred non-invasive oral (through the mouth), nasal, pneumonial (inhalation), and rectal routes. Many medications, however, can not be delivered using these routes because they might be susceptible to degradation or are not incorporated efficiently. For this reason many protein and peptide drugs have to be delivered by injection. For example, many immunisations are based on the delivery of protein drugs and are often done by injection. Current efforts in the area of drug delivery include the development of targeted delivery in which the drug is only active in the target area of the body (for example, in cancerous tissues) and sustained release formulations in which the drug is released over a period of time in a controlled manner from a formulation. This new book focuses on worldwide research on drug delivery and targeting at the molecular, cellular, and higher levels.