You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
None
Growing evidence suggests that epigenetic mechanisms play a central role in stem cell biology and are vital for determining gene expression during cellular differentiation and governing mammalian development. In Stem Cell Epigenetics, leading international researchers examine how chromatin regulation and bona fide epigenetic mechanisms underlie stem cell renewal and differentiation. Authors also explore how the diversity of cell types, including the extent revealed by single cell omic approaches, is achieved, and how such processes may be reversed or managed via epigenetic reprogramming.Topics discussed include chromatin in pluripotency, stem cells and DNA methylation, histone modifications ...
Propelled by the success of the sequencing of the human and many related genomes, molecular and cellular biology has delivered significant scientific breakthroughs. Mathematics (broadly defined) continues to play a major role in this effort, helping to discover the secrets of life by working collaboratively with bench biologists, chemists and physicists. Because of its outstanding record of interdisciplinary research and training, the IMA was an ideal venue for the 2007-2008 IMA thematic year on Mathematics of Molecular and Cellular Biology. The kickoff event for this thematic year was a tutorial on Mathematics of Nucleic Acids, followed by the workshop Mathematics of Molecular and Cellular ...
Neuropsychiatric Disorders and Epigenetics, Second Edition is a comprehensive reference on the epigenetic basis of common neuropsychiatric disorders. The volume is organized into chapters covering individual neuropsychiatric disorders, from addiction to anxiety and autism spectrum disorders, and is contributed by leading experts in their respective fields. The epigenetic aspects of each disorder are discussed, in the context of the full range of associated epigenetic mechanisms, including DNA modification, histone post-translational modification, chromatin organization, and non-coding RNA. A particular emphasis is placed on potential epigenetic interventions, when the effects of environmenta...
Can genes determine which fifty-year-old will succumb to Alzheimer’s, which citizen will turn out on voting day, and which child will be marked for a life of crime? Yes, according to the Internet, a few scientific studies, and some in the biotechnology industry who should know better. Sheldon Krimsky and Jeremy Gruber gather a team of genetic experts to argue that treating genes as the holy grail of our physical being is a patently unscientific endeavor. Genetic Explanations urges us to replace our faith in genetic determinism with scientific knowledge about how DNA actually contributes to human development. The concept of the gene has been steadily revised since Watson and Crick discovere...
Personalized Epigenetics, Second Edition discusses the core translatability of epigenetics to health management of individuals who have unique variations in their epigenetic signatures that can guide both disorder and disease prevention and therapy. Fully updated and revised, this new edition details inter-individual variability in the major epigenetic process in humans consisting of DNA methylation, histone modifications, noncoding RNA, and the diagnostic, prognostic, and therapeutic potential of the field. It also reviews the impact of the environment on epigenetic variations among individuals and the role of pharmacology and drug development in personalized epigenetics. Most importantly, ...
Epigenetics and Metabolomics, a new volume in the Translational Epigenetics series, offers a synthesized discussion of epigenetic control of metabolic activity, and systems-based approaches for better understanding these mechanisms. Over a dozen chapter authors provide an overview of epigenetics in translational medicine and metabolomics techniques, followed by analyses of epigenetic and metabolomic linkage mechanisms likely to result in effective identification of disease biomarkers, as well as new therapies targeting the removal of the inappropriate epigenetic alterations. Epigenetic interventions in cancer, brain damage, and neuroendocrine disease, among other disorders, are discussed in-depth, with an emphasis on exploring next steps for clinical translation and personalized healthcare. - Offers a synthesized discussion of epigenetic regulation of metabolic activity and systems-based approaches to power new research - Discusses epigenetic control of metabolic pathways and possible therapeutic targets for cancer, neurodegenerative, and neuroendocrine diseases, among others - Provides guidance in epigenomics and metabolomic research methodology
While many books proliferate elucidating the science behind the transformations during cooking, none teach the concepts of physics chemistry through problem solving based on culinary experiments as this one by renowned chemist and one of the founders of molecular gastronomy. Calculating and Problem Solving Through Culinary Experimentation offers an appealing approach to teaching experimental design and scientific calculations. Given the fact that culinary phenomena need physics and chemistry to be interpreted, there are strong and legitimate reasons for introducing molecular gastronomy in scientific curriculum. As any scientific discipline, molecular gastronomy is based on experiments (to ob...
In recent years, knowledge of epigenetic mechanisms underlying disease onset and progression has proven crucial for the development of novel early diagnosis and prognosis biomarkers for patient stratification and precision medicine. Epigenetics in Precision Medicine, a new volume in the Translational Epigenetics series, provides a thorough discussion and overview of current developments in clinical epigenetics with special emphasis on epigenetic biomarkers that can be used for clinical diagnosis, prognosis, patient stratification, and treatment monitoring. Disease types discussed include cancer, metabolic disorders, neurodegenerative diseases, bone disease, and immune-related disorders. The ...
Epigenetics in Human Disease, Third Edition examines the diseases and conditions on which we have advanced knowledge of epigenetic mechanisms, such as cancer, autoimmune disorders, aging, metabolic disorders, neurobiological disorders and cardiovascular disease. From molecular mechanisms and epigenetic technology to clinical translation of recent research, the nature and applications of the science is presented for those with interests ranging from the fundamental basis of epigenetics to therapeutic interventions for epigenetic-based disorders, with an emphasis throughout on understanding and application of key concepts in new research and clinical practice. Fully revised and up-to-date, thi...