You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Authored by an integrated committee of plant and animal scientists, this review of newer molecular genetic techniques and traditional research methods is presented as a compilation of high-reward opportunities for agricultural research. Directed to the Agricultural Research Service and the agricultural research community at large, the volume discusses biosciences research in genetic engineering, animal science, plant science, and plant diseases and insect pests. An optimal climate for productive research is discussed.
In April 1982 the Agricultural Research Service (ARS) of the U.S. Department of Agriculture began a major ongoing review by sponsoring an internal symposium aimed at defining comprehensive, long-range planning goals in bioregulation. The study of the ARS research programs concerned ith bioregulation was to be conducted by the appointed Committee on Biosciences Research in Agriculture. In the committee's view of basic agricultural research as it is conducted within Agricultural Research Service (ARS) laboratories and within organizations throughout the country, three important features determine program planning direction. These are (1) the quickening pace of discovery, (2) the development of...
In recent years much has happened to justify an examination of biological research in light of national security concerns. The destructive application of biotechnology research includes activities such as spreading common pathogens or transforming them into even more lethal forms. Policymakers and the scientific community at large must put forth a vigorous and immediate response to this challenge. This new book by the National Research Council recommends that the government expand existing regulations and rely on self-governance by scientists rather than adopt intrusive new policies. One key recommendation of the report is that the government should not attempt to regulate scientific publish...
Based on a series of regional meetings on university campuses with officials from the national security community and academic research institutions, this report identifies specific actions that should be taken to maintain a thriving scientific research environment in an era of heightened security concerns. Actions include maintaining the open exchange of scientific information, fostering a productive environment for international scholars in the U.S., reexamining federal definitions of sensitive but unclassified research, and reviewing policies on deemed export controls. The federal government should establish a standing entity, preferably a Science and Security Commission, that would review policies regarding the exchange of information and the participation of foreign-born scientists and students in research.
Research and innovation in the life sciences is driving rapid growth in agriculture, biomedical science, information science and computing, energy, and other sectors of the U.S. economy. This economic activity, conceptually referred to as the bioeconomy, presents many opportunities to create jobs, improve the quality of life, and continue to drive economic growth. While the United States has been a leader in advancements in the biological sciences, other countries are also actively investing in and expanding their capabilities in this area. Maintaining competitiveness in the bioeconomy is key to maintaining the economic health and security of the United States and other nations. Safeguarding...
Now more than ever, biology has the potential to contribute practical solutions to many of the major challenges confronting the United States and the world. A New Biology for the 21st Century recommends that a "New Biology" approach-one that depends on greater integration within biology, and closer collaboration with physical, computational, and earth scientists, mathematicians and engineers-be used to find solutions to four key societal needs: sustainable food production, ecosystem restoration, optimized biofuel production, and improvement in human health. The approach calls for a coordinated effort to leverage resources across the federal, private, and academic sectors to help meet challenges and improve the return on life science research in general.
Between 1973 and 2016, the ways to manipulate DNA to endow new characteristics in an organism (that is, biotechnology) have advanced, enabling the development of products that were not previously possible. What will the likely future products of biotechnology be over the next 5â€"10 years? What scientific capabilities, tools, and/or expertise may be needed by the regulatory agencies to ensure they make efficient and sound evaluations of the likely future products of biotechnology? Preparing for Future Products of Biotechnology analyzes the future landscape of biotechnology products and seeks to inform forthcoming policy making. This report identifies potential new risks and frameworks for risk assessment and areas in which the risks or lack of risks relating to the products of biotechnology are well understood.
This report surveys opportunities for future Army applications in biotechnology, including sensors, electronics and computers, materials, logistics, and medical therapeutics, by matching commercial trends and developments with enduring Army requirements. Several biotechnology areas are identified as important for the Army to exploit, either by direct funding of research or by indirect influence of commercial sources, to achieve significant gains in combat effectiveness before 2025.
The often-confrontational debate over the development of agricultural and pharmaceutical products made with the help of genetic modification has drastically limited the exploitation of this still new technology. This book focuses on the risk and rewards of genetic modification, the differing paths the dialogue on GM has followed in Europe and the developing world in contrast to the United States, how the debate impacts the commercial realities of companies developing new products, and what strategies might foster more constructive discussion over the costs and benefits of genetic manipulation to bring about more rational and internationally coordinated public policy.
Biomedical advances have made it possible to identify and manipulate features of living organisms in useful ways-leading to improvements in public health, agriculture, and other areas. The globalization of scientific and technical expertise also means that many scientists and other individuals around the world are generating breakthroughs in the life sciences and related technologies. The risks posed by bioterrorism and the proliferation of biological weapons capabilities have increased concern about how the rapid advances in genetic engineering and biotechnology could enable the production of biological weapons with unique and unpredictable characteristics. Globalization, Biosecurity, and the Future of Life Sciences examines current trends and future objectives of research in public health, life sciences, and biomedical science that contain applications relevant to developments in biological weapons 5 to 10 years into the future and ways to anticipate, identify, and mitigate these dangers.