You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The report outlines key elements to consider in designing a program to create climate-quality data from satellites. It examines historical attempts to create climate data records, provides advice on steps for generating, re-analyzing, and storing satellite climate data, and discusses the importance of partnering between agencies, academia, and industry. NOAA will use this report-the first in a two-part study-to draft an implementation plan for climate data records.
To better understand our climate system, it is important that we have climate data records (CDRs)-time series of measurements of sufficient length, consistency, and continuity to determine climate variability and change-that possess the accuracy, longevity, and stability to facilitate credible climate monitoring. In 2004, the National Research Council (NRC) published Climate Data Records from Environmental Satellites to provide the National Oceanic and Atmospheric Administration (NOAA) with initial guidelines on how to develop and implement an effective CDR program. NOAA used this book to draft a plan for a new Scientific Data Stewardship (SDS) program, and then asked NRC to review it. The n...
The National Oceanic and Atmospheric Administration (NOAA) uses precipitation data in many applications including hurricane forecasting. Currently, NOAA uses data collected from the Tropical Rainfall Measuring Mission (TRMM) satellite that was launched in 1997 by NASA in cooperation with the Japan Aerospace Exploration Agency. NASA is now making plans to launch the Global Precipitation Measurement (GPM) mission in 2013 to succeed TRMM, which was originally intended as a 3 to 5 year mission but has enough fuel to orbit until 2012. The GPM mission consists of a "core" research satellite flying with other "constellation" satellites to provide global precipitation data products at three-hour int...
None
A variety of biophysical applications (e.g. leaf area index and gross primary productivity) have been derived from measurements of the Earth system obtained remotely by NASA’s MODIS sensors and other satellite platforms. In Biophysical Applications of Satellite Remote Sensing, the authors describe major applications of satellite remote sensing for studying Earth's biophysical phenomena. The focus of the book lies on the broad palette of specific applications (metrics) of biophysical activity derived using satellite remote sensing. With in-depth discussions of satellite-derived biophysical metrics that focus specifically on theory, methodology, validation, major findings, and directions of future research, this book provides an excellent resource for remote sensing specialists, ecologists, geographers, biologists, climatologists, and environmental scientists.
Climate and other environmental changes are drawing unprecedented concern and attention from national governments, international organizations and local communities. Global warming has left noticeable impacts on the environment and the ecosystems it supports (including humans), and has important implications for sustainable economic and social development in the future. Satellite observations of climate and environmental change have become an increasingly important tool in recent years in helping to shape the response of international communities to this critical global challenge. The book presents the latest advances in satellite-based remote sensing of the Earth’s environment - ranging from applications in climate and atmospheric science to hydrology, oceanography, hydrology, geomorphology, ecology and fire studies. Introductory chapters also cover key technical aspects such as instrumentation, calibration, data analysis, and GIS tools for decision-making.
This report addresses the transition of research satellites, instruments, and calculations into operational service for accurately observing and predicting the Earth's environment. These transitions, which take place in large part between NASA and NOAA, are important for maintaining the health, safety, and prosperity of the nation, and for achieving the vision of an Earth Information System in which quantitative information about the complete Earth system is readily available to myriad users. Many transitions have been ad hoc, sometimes taking several years or even decades to occur, and others have encountered roadblocksâ€"lack of long-range planning, resources, institutional or cultural differences, for instanceâ€"and never reached fruition. Satellite Observations of Earth's Environment recommends new structures and methods that will allow seamless transitions from research to practice.
This study offered an independent peer review for a synthetic document being produced for the CCSP. It found the draft document to be in a fairly early stage of development and noted several issues needing attention in the revision. The draft was inconsistent across sections with respect to whether or not it accepted two assumptions: that more skillful forecasts necessarily have greater value, and that the most useful form of information is a projected future value of an outcome parameter with an uncertainty distribution. Available scientific evidence gives reason to question these assumptions, and the draft did not discuss the evidence. Among other issues needing attention, the review called for the revised draft to do more to substantiate its claims of the potential benefits of knowledge-action networks and to give more careful consideration to the appropriate balance of roles between governmental and private efforts.
This is the first textbook to consider all aspects of thecryosphere system in the context of global environmental changedriven by human activity and climate. Considers all six aspects of the cryosphere – ice sheets,glacier ice, permafrost, river and lake ice, sea ice and snow– in the context of global environmental change driven byhuman activity and climate. Describes a new concept of cryosphere transience and landscapetransition which links climate, hydrology, ecology andgeomorphology. Looks at the evidence, process, and patterns of cryospherechange, on local and global scales. Provides a wealth of data to inform the current globalenvironmental change debate. Additional resources for this book can be found at: ahref="http://bcs.wiley.com/he-bcs/Books?action=index&bcsId=5064&itemId=140512976X"http://bcs.wiley.com/he-bcs/Books?action=index&bcsId=5064&itemId=140512976X/a.
A growing appreciation for how variations in climate affect society and the environment has increased the demand for fast and accurate predictions of climate variability. The Climate Variability and Predictability (CLIVAR) program, established internationally in 1995 and expanded to include a U.S. component in 1998, focuses on improving understanding and skill in predicting climate variability on seasonal to centennial time scales. This report evaluates the performance of the U.S. CLIVAR Project Office (PO) in fulfilling its charge from supporting agencies. The report concludes that the project office is vital for coordinating US CLIVAR activities and is effective despite limited resources. It also provides suggestions for enhancing the communications from and visibility of US CLIVAR activities and for developing strategic directions for the future.