You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The Second-Order Adjoint Sensitivity Analysis Methodology generalizes the First-Order Theory presented in the author’s previous books published by CRC Press. This breakthrough has many applications in sensitivity and uncertainty analysis, optimization, data assimilation, model calibration, and reducing uncertainties in model predictions. The book has many illustrative examples that will help readers understand the complexity of the subject and will enable them to apply this methodology to problems in their own fields. Highlights: • Covers a wide range of needs, from graduate students to advanced researchers • Provides a text positioned to be the primary reference for high-order sensiti...
This is an authoritative compilation of information regarding methods and data used in all phases of nuclear engineering. Addressing nuclear engineers and scientists at all levels, this book provides a condensed reference on nuclear engineering since 1958.
Continuing the author’s previous work on modeling, this book presents the most recent advances in high-order predictive modeling. The author begins with the mathematical framework of the 2nd-BERRU-PM methodology, an acronym that designates the “second-order best-estimate with reduced uncertainties (2nd-BERRU) predictive modeling (PM).” The 2nd-BERRU-PM methodology is fundamentally anchored in physics-based principles stemming from thermodynamics (maximum entropy principle) and information theory, being formulated in the most inclusive possible phase-space, namely the combined phase-space of computed and measured parameters and responses. The 2nd-BERRU-PM methodology provides second-order output (means and variances) but can incorporate, as input, arbitrarily high-order sensitivities of responses with respect to model parameters, as well as arbitrarily high-order moments of the initial distribution of uncertain model parameters, in order to predict best-estimate mean values for the model responses (i.e., results of interest) and calibrated model parameters, along with reduced predicted variances and covariances for these predicted responses and parameters.
Data evaluation and data combination require the use of a wide range of probability theory concepts and tools, from deductive statistics mainly concerning frequencies and sample tallies to inductive inference for assimilating non-frequency data and a priori knowledge. Computational Methods for Data Evaluation and Assimilation presents interdiscipli
This text describes a comprehensive adjoint sensitivity analysis methodology (nth-CASAM), developed by the author, which enablesthe efficient and exact computation of arbitrarily high-order functional derivatives of model responses to model parameters in large-scale systems. The nth-CASAM framework is set in linearly increasing Hilbert spaces, each of state-function-dimensionality, as opposed to exponentially increasing parameter-dimensional spaces, thereby overcoming the so-called “curse of dimensionality” in sensitivity and uncertainty analysis. The nth-CASAM is applicable to any model; the larger the number of model parameters, the more efficient the nth-CASAM becomes for computing ar...
This book explores fundamental scientific problems essential for autonomous cyber defense. Specific areas include: Game and control theory-based moving target defenses (MTDs) and adaptive cyber defenses (ACDs) for fully autonomous cyber operations; The extent to which autonomous cyber systems can be designed and operated in a framework that is significantly different from the human-based systems we now operate; On-line learning algorithms, including deep recurrent networks and reinforcement learning, for the kinds of situation awareness and decisions that autonomous cyber systems will require; Human understanding and control of highly distributed autonomous cyber defenses; Quantitative perfo...
This book addresses the experimental calibration of best-estimate numerical simulation models. The results of measurements and computations are never exact. Therefore, knowing only the nominal values of experimentally measured or computed quantities is insufficient for applications, particularly since the respective experimental and computed nominal values seldom coincide. In the author’s view, the objective of predictive modeling is to extract “best estimate” values for model parameters and predicted results, together with “best estimate” uncertainties for these parameters and results. To achieve this goal, predictive modeling combines imprecisely known experimental and computatio...
Nuclear engineering has undergone extensive progress over the years. In the past century, colossal developments have been made and with specific reference to the mathematical theory and computational science underlying this discipline, advances in areas such as high-order discretization methods, Krylov Methods and Iteration Acceleration have steadily grown. Nuclear Computational Science: A Century in Review addresses these topics and many more; topics which hold special ties to the first half of the century, and topics focused around the unique combination of nuclear engineering, computational science and mathematical theory. Comprising eight chapters, Nuclear Computational Science: A Centur...
The second edition of this successful and widely recognized textbook again focuses on discrete topics. The author recognizes two distinct paths of study and careers of actuarial science and financial engineering. This text can be very useful as a common core for both. Therefore, there is substantial material in Introduction to Financial Mathematics, Second Edition on the theory of interest (the first half of the book), as well as the probabilistic background necessary for the study of portfolio optimization and derivative valuation (the second half). A course in multivariable calculus is not required. The material in the first two chapters should go a long way toward helping students prepare...
This book provides an up-to-date review of the status and prospects of different options in energy conversion and storage technologies, as seen by a panel of world leading experts. It offers a platform for readers engaged in planning and undertaking new energy solutions, or retrofitting and redesigning the existing installations, to confront and to compare the pros and cons of various novel technology options. This book presents state-of-the-art papers on a timely topic.