You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This unique book provides comprehensive overview of the field of immunology related to engineered nanomaterials used for biomedical applications. It contains literature review, case studies and protocols. The book can serve as a source of information about nanoimmunotoxicology for both junior scientists and experts in the field. The authors have more than 10 years of experience with preclinical characterization of engineered nanomaterials used for medical applications, and they share their experience with the readers. In addition, the international team of experts in the field provides the opinion and share the expertise on individual topics related to nanoparticle physicochemical characteri...
With the development in the 1960s of ultrahigh vacuum equipment and techniques and electron, X-ray, and ion beam techniques to determine the structure and composition of interfaces, activities in the field of surface science grew nearly exponentially. Today surface science impacts all major fields of study from physical to biological sciences, from physics to chemistry, and all engineering disciplines. The materials and phenomena characterized by surface science range from se- conductors, where the impact of surface science has been critical to progress, to metals and ceramics, where selected contributions have been important, to bio- terials, where contributions are just beginning to impact...
The articles collected in this publication have previously been published in eight special issues of the Journal of Biomaterials Science, Polymer Edition, in honour of Dr. Allan S. Hoffman, who is known as a pioneer, a leader and a mentor in the field of biomaterials. The papers from renowned scientists from all parts of the world, representing the
Characterization of Nanoparticles: Measurement Processes for Nanoparticles surveys this fast growing field, including established methods for the physical and chemical characterization of nanoparticles. The book focuses on sample preparation issues (including potential pitfalls), with measurement procedures described in detail. In addition, the book explores data reduction, including the quantitative evaluation of the final result and its uncertainty of measurement. The results of published inter-laboratory comparisons are referred to, along with the availability of reference materials necessary for instrument calibration and method validation. The application of these methods are illustrated with practical examples on what is routine and what remains a challenge. In addition, this book summarizes promising methods still under development and analyzes the need for complementary methods to enhance the quality of nanoparticle characterization with solutions already in operation.
Proteins, Cells and Materials contains a collection of articles, which constitute together the complete Festschrift in honor of the 65th birthday of Dr. John L. Brash. For the first time these articles - published previously in several special issues of the Journal of Biomaterials Science Polymer Edition - have been compiled into one comprehensive volume.Over the past 40 years John Brash, a member of the Editorial Board of the Journal of Biomaterials Science Polymer Edition, has distinguished himself in the field of biomaterials. Much of his efforts have focused on detailed studies of blood–surface interactions, particularly those of plasma proteins. His multi-faceted approach recognises the importance of hemodynamics, transport and surface phenomena in the gross effects that result from blood–surface contact. In this book articles on the most recent development in these areas are collected and will thus provide a wealth of information of current research to specialists in the above-mentioned fields.
This new edition features research from nearly 60 of the profession's most distinguished international authorities. Recognizing emerging developments in biopolymer systems research with fully updated and expanded chapters, the second edition discusses the biopolymer-based multilayer structures and their application in biosensors, the progress made in the understanding of protein behaviour at the air-water interface, experimental findings in ellipsometry and reflectometry, and recent developments concerning protein interfacial behaviour in microfabricated total analysis systems and microarrays. With over 3000 references, this is an essential reference for professionals and students in surface, pharmaceutical, colloid, polymer, and medicinal chemistry; chemical, formulation, and application engineering; and pharmacy.
Considers the design, structure and biological activity of ordered films comprised of proteins, polymers, amphiphile molecules and colloidal particles, and assesses the ability of protein/polyion multilayers to mimic living organelles. The book discusses how to reach predetermined locations with proteins and orient molecules while preserving their bioactivity.
This completely updated and revised second edition of Surface Analysis: The Principal Techniques, deals with the characterisation and understanding of the outer layers of substrates, how they react, look and function which are all of interest to surface scientists. Within this comprehensive text, experts in each analysis area introduce the theory and practice of the principal techniques that have shown themselves to be effective in both basic research and in applied surface analysis. Examples of analysis are provided to facilitate the understanding of this topic and to show readers how they can overcome problems within this area of study.