You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The field of computer graphics combines display hardware, software, and interactive techniques in order to display and interact with data generated by applications. Visualization is concerned with exploring data and information graphically in such a way as to gain information from the data and determine significance. Visual analytics is the science of analytical reasoning facilitated by interactive visual interfaces. Expanding the Frontiers of Visual Analytics and Visualization provides a review of the state of the art in computer graphics, visualization, and visual analytics by researchers and developers who are closely involved in pioneering the latest advances in the field. It is a unique presentation of multi-disciplinary aspects in visualization and visual analytics, architecture and displays, augmented reality, the use of color, user interfaces and cognitive aspects, and technology transfer. It provides readers with insights into the latest developments in areas such as new displays and new display processors, new collaboration technologies, the role of visual, multimedia, and multimodal user interfaces, visual analysis at extreme scale, and adaptive visualization.
This synthesis lecture presents an intuitive introduction to the mathematics of motion and deformation in computer graphics. Starting with familiar concepts in graphics, such as Euler angles, quaternions, and affine transformations, we illustrate that a mathematical theory behind these concepts enables us to develop the techniques for efficient/effective creation of computer animation. This book, therefore, serves as a good guidepost to mathematics (differential geometry and Lie theory) for students of geometric modeling and animation in computer graphics. Experienced developers and researchers will also benefit from this book, since it gives a comprehensive overview of mathematical approaches that are particularly useful in character modeling, deformation, and animation.
Interactive display and visualization of large geometric and textured models is becoming a fundamental capability. There are numerous application areas, including games, movies, CAD, virtual prototyping, and scientific visualization. One of observations about geometric models used in interactive applications is that their model complexity continues to increase because of fundamental advances in 3D modeling, simulation, and data capture technologies. As computing power increases, users take advantage of the algorithmic advances and generate even more complex models and data sets. Therefore, there are many cases where we are required to visualize massive models that consist of hundreds of mill...
Information theory (IT) tools, widely used in scientific fields such as engineering, physics, genetics, neuroscience, and many others, are also emerging as useful transversal tools in computer graphics. In this book, we present the basic concepts of IT and how they have been applied to the graphics areas of radiosity, adaptive ray-tracing, shape descriptors, viewpoint selection and saliency, scientific visualization, and geometry simplification. Some of the approaches presented, such as the viewpoint techniques, are now the state of the art in visualization. Almost all of the techniques presented in this book have been previously published in peer-reviewed conference proceedings or internati...
This is the first book in a three-part series that traces the development of the GPU. Initially developed for games the GPU can now be found in cars, supercomputers, watches, game consoles and more. GPU concepts go back to the 1970s when computer graphics was developed for computer-aided design of automobiles and airplanes. Early computer graphics systems were adopted by the film industry and simulators for airplanes and high energy physics—exploding nuclear bombs in computers instead of the atmosphere. A GPU has an integrated transform and lighting engine, but these were not available until the end of the 1990s. Heroic and historic companies expanded the development and capabilities of the graphics controller in pursuit of the ultimate device, a fully integrated self-contained GPU. Fifteen companies worked on building the first fully integrated GPU, some succeeded in the console, and Northbridge segments, and Nvidia was the first to offer a fully integrated GPU for the PC. Today the GPU can be found in every platform that involves a computer and a user interface.
Quaternion multiplication can be used to rotate vectors in three-dimensions. Therefore, in computer graphics, quaternions have three principal applications: to increase speed and reduce storage for calculations involving rotations, to avoid distortions arising from numerical inaccuracies caused by floating point computations with rotations, and to interpolate between two rotations for key frame animation. Yet while the formal algebra of quaternions is well-known in the graphics community, the derivations of the formulas for this algebra and the geometric principles underlying this algebra are not well understood. The goals of this monograph are to provide a fresh, geometric interpretation fo...
This book serves as a practical guide to simulation of 3D deformable solids using the Finite Element Method (FEM). It reviews a number of topics related to the theory and implementation of FEM approaches: measures of deformation, constitutive laws of nonlinear materials, tetrahedral discretizations, and model reduction techniques for real-time simulation. Simulations of deformable solids are important in many applications in computer graphics, including film special effects, computer games, and virtual surgery. The Finite Element Method has become a popular tool in many such applications. Variants of FEM catering to both offline and real-time simulation have had a mature presence in computer...
The ultimate guide to data visualization and information design for business. Making good charts is a must-have skill for managers today. The vast amount of data that drives business isn't useful if you can't communicate the valuable ideas contained in that data—the threats, the opportunities, the hidden trends, the future possibilities. But many think that data visualization is too difficult—a specialist skill that's either the province of data scientists and complex software packages or the domain of professional designers and their visual creativity. Not so. Anyone can learn to produce quality "dataviz" and, more broadly, clear and effective information design. Good Charts will show y...