You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The aim of the Expositions is to present new and important developments in pure and applied mathematics. Well established in the community over more than two decades, the series offers a large library of mathematical works, including several important classics. The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers interested in a thorough study of the subject. Editorial Board Lev Birbrair, Universidade Federal do Cear , Fortaleza, Brasil Walter D. Neumann, Columbia University, New York, USA Markus J. Pflaum, Unive...
The question of the presence of various asymptotic properties of the solutions of ordinary differential equations arises when solving various practical problems. The investigation of these questions is still more important for impulsive differential equations which have a wider field of application than the ordinary ones.The results obtained by treating the asymptotic properties of the solutions of impulsive differential equations can be found in numerous separate articles. The systematized exposition of these results in a separate book will satisfy the growing interest in the problems related to the asymptotic properties of the solutions of impulsive differential equations and their applications.
This book contains the main results of the authors' investigations on the development and application of numerical-analytic methods for ordinary nonlinear boundary value problems (BVPs). The methods under consideration provide an opportunity to solve the two important problems of the BVP theory ? namely, to establish existence theorems and to build approximation solutions. They can be used to investigate a wide variety of BVPs.The Appendix, written in collaboration with S I Trofimchuk, discusses the connection of the new method with the classical Cesari, Cesari-Hale and Lyapunov-Schmidt methods.
The concept of impulsive control and its mathematical foundation called - pulsive di?erential equations,or di?erential equations with impulse e?ects,or di?erential equations with discontinuous righthand sides have a long history. In fact, in mechanical systems impulsive phenomena had been studied for a long time under di?erent names such as: mechanical systems with impacts. The study of impulsive control systems (control systems with impulse e?ects) has also a long history that can be traced back to the beginning of modern control theory. Many impulsive control methods were successfully developed under the framework of optimal control and were occasionally called impulse control. The so call...
Provides engineers and applied scientists with some selected results of functional equations and their applications, with the intention of changing the way they think about mathematical modelling. Many of the proofs are simplified or omitted, so as not to bore or confuse engineers. Functional equati
A brand-new conceptual look at dynamical thermodynamics This book merges the two universalisms of thermodynamics and dynamical systems theory in a single compendium, with the latter providing an ideal language for the former, to develop a new and unique framework for dynamical thermodynamics. In particular, the book uses system-theoretic ideas to bring coherence, clarity, and precision to an important and poorly understood classical area of science. The dynamical systems formalism captures all of the key aspects of thermodynamics, including its fundamental laws, while providing a mathematically rigorous formulation for thermodynamical systems out of equilibrium by unifying the theory of mech...
This text presents a unique treatment of network control systems. Drawing from fundamental principles of dynamical systems theory and dynamical thermodynamics, the authors develop a continuous-time, discrete-time, and hybrid dynamical system and control framework for linear and nonlinear large-scale network systems. The proposed framework extends the concepts of energy, entropy, and temperature to undirected and directed information networks. Continuous-time, discrete-time, and hybrid thermodynamic principles are used to design distributed control protocol algorithms for static and dynamic networked systems in the face of system uncertainty, exogenous disturbances, imperfect system network c...
This monograph is the first published book devoted to the theory of differential equations with non-instantaneous impulses. It aims to equip the reader with mathematical models and theory behind real life processes in physics, biology, population dynamics, ecology and pharmacokinetics. The authors examine a wide scope of differential equations with non-instantaneous impulses through three comprehensive chapters, providing an all-rounded and unique presentation on the topic, including: - Ordinary differential equations with non-instantaneous impulses (scalar and n-dimensional case)- Fractional differential equations with non-instantaneous impulses (with Caputo fractional derivatives of order ...
This book deals with the existence and stability of solutions to initial and boundary value problems for functional differential and integral equations and inclusions involving the Riemann-Liouville, Caputo, and Hadamard fractional derivatives and integrals. A wide variety of topics is covered in a mathematically rigorous manner making this work a valuable source of information for graduate students and researchers working with problems in fractional calculus. Contents Preliminary Background Nonlinear Implicit Fractional Differential Equations Impulsive Nonlinear Implicit Fractional Differential Equations Boundary Value Problems for Nonlinear Implicit Fractional Differential Equations Boundary Value Problems for Impulsive NIFDE Integrable Solutions for Implicit Fractional Differential Equations Partial Hadamard Fractional Integral Equations and Inclusions Stability Results for Partial Hadamard Fractional Integral Equations and Inclusions Hadamard–Stieltjes Fractional Integral Equations Ulam Stabilities for Random Hadamard Fractional Integral Equations
This volume contains the selected contributed papers from the BIOMAT 2009 ? Ninth International Symposium on Mathematical and Computational Biology and the contributions of the Keynote Speakers which present the state of the art of fundamental topics of interdisciplinary science to research groups and interested individuals on the mathematical Modelling of biological phenomena. New results are presented on cells, particularly their growth rate and fractal behavior of colony contours; on control mechanisms of molecular systems; the Monte?Carlo simulation of protein models; and on fractal and nonlinear analysis of biochemical time series. There are also new results on population dynamics, such...