You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book presents cutting edge techniques for characterising, quantifying and modelling geomaterial variability in addition to methods for quantifying the influence of this variability on the performance of geotechnical structures. It includes state-of-the-art refereed journal papers by leading international researchers along with written and informal discussions on a selection of key submissions that were presented at a Symposium at the Institution of Civil Engineers on 9th May 2005.
This book gives information on non destructive techniques for assessment of concrete structures. It synthesizes the best of international knowledge about what techniques can be used for assessing material properties (strength) and structural properties (geometry, defects...). It describes how the techniques can be used so as to answer a series of usual questions, highlighting their capabilities and limits, and providing advices for a better use of techniques. It also focuses on possible combinations of techniques so as to improve the assessment. It is based on many illustrative examples and give in each case references to standards and guidelines.
The book presents the work of the RILEM Technical Committee 249-ISC. Addressing the effective application of new recommendations for non-destructive in situ strength assessment of concrete, it provides information about the different steps of the investigation and processing of test results, until the delivery of strength estimates, and includes tables giving the minimum required number of cores in a variety of situations as well as several examples of how the recommendations can be used in practice. The book explores a topic which is of major importance, i.e. the assessment of concrete compressive strength in existing structures. This property (both mean and standard deviation) is a key input in many cases, such as the reinforcement of structures, the safety checking, the extension of service life. As the new RILEM recommendations imply a deep revision (and improvement) of field practice, the book is intended for managers of structures, structural engineers and specialists of NDT that have to answer these issues. More widely, it will benefit engineers and students who are interested in NDT and in the safety analysis of structures.
Reliability-based design is the only engineering methodology currently available which can ensure self-consistency in both physical and probabilistic terms. It is also uniquely compatible with the theoretical basis underlying other disciplines such as structural design. It is especially relevant as geotechnical design becomes subject to increasing codification and to code harmonization across national boundaries and material types. Already some codes of practice describe the principles and requirements for safety, serviceability, and durability of structures in reliability terms. This book presents practical computational methods in concrete steps that can be followed by practitioners and students. It also provides geotechnical examples illustrating reliability analysis and design. It aims to encourage geotechnical engineers to apply reliability-based design in a realistic context that recognises the complex variabilities in geomaterials and model uncertainties arising from a profession steeped in empiricism. By focusing on learning through computations and examples, this book serves as a valuable reference for engineers and a resource for students.
Geotechnical Risk and Safety V contains contributions presented at the 5th International Symposium on Geotechnical Safety and Risk (5th ISGSR, Rotterdam, 13-16 October 2015) which was organized under the auspices of the Geotechnical Safety Network (GEOSNet) and the following technical committees of the of the International Society of Soil Mechanics and Geotechnical Engineering (ISSGME): • TC304 Engineering Practice of Risk Assessment & Management • TC205 Safety and Serviceability in Geotechnical Design • TC212 Deep Foundations • TC302 Forensic Geotechnical Engineering Geotechnical Risk and Safety V covers seven themes: 1. Geotechnical Risk Management and Risk Communication 2. Variabi...
Safety, Reliability, Risk and Life-Cycle Performance of Structures and Infrastructures contains the plenary lectures and papers presented at the 11th International Conference on STRUCTURAL SAFETY AND RELIABILITY (ICOSSAR2013, New York, NY, USA, 16-20 June 2013). This set of a book of abstracts and searchable, full paper USBdevice is must-have literature for researchers and practitioners involved with safety, reliability, risk and life-cycle performance of structures and infrastructures.
The past few years have demonstrated how civil infrastructure continues to experience an unprecedented scale of extreme loading conditions (i.e. hurricanes, wildfires and earthquakes). Despite recent advancements in various civil engineering disciplines, specific to the analysis, design and assessment of structures, it is unfortunate that it is common nowadays to witness large scale damage in buildings, bridges and other infrastructure. The analysis, design and assessment of infrastructure comprises of a multitude of dimensions spanning a highly complex paradigm across material sciences, structural engineering, construction and planning among others. While traditional methods fall short of a...
While numerous advanced statistical approaches have recently been developed for quantitative trait loci (QTL) mapping, the methods are scattered throughout the literature. Statistical Methods for QTL Mapping brings together many recent statistical techniques that address the data complexity of QTL mapping. After introducing basic genetics topics and statistical principles, the author discusses the principles of quantitative genetics, general statistical issues of QTL mapping, commonly used one-dimensional QTL mapping approaches, and multiple interval mapping methods. He then explains how to use a feature selection approach to tackle a QTL mapping problem with dense markers. The book also pro...
This book presents the latest advances in research to analyze mechanical damage and its detection in multilayer systems. The contents are linked to the Rilem TC241 - MCD scientific activities and the proceedings of the 8th RILEM International Conference on Mechanisms of Cracking and Debonding in Pavements (MCD2016). MCD2016 was hosted by Ifsttar and took place in Nantes, France, on June 7-9, 2016. In their lifetime, pavements undergo degradation due to different mechanisms of which cracking is among the most important ones. The damage and the fracture behavior of all its material layers as well as interfaces must be understood. In that field, the research activities aims to develop a deeper fundamental understanding of the mechanisms responsible for cracking and debonding in asphalt concrete and composite (e.g. asphalt overlays placed on PCC or thin cement concrete overlay placed on asphalt layer) pavement systems.