Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Building Data Science Teams
  • Language: en
  • Pages: 14

Building Data Science Teams

As data science evolves to become a business necessity, the importance of assembling a strong and innovative data teams grows. In this in-depth report, data scientist DJ Patil explains the skills, perspectives, tools and processes that position data science teams for success. Topics include: What it means to be "data driven." The unique roles of data scientists. The four essential qualities of data scientists. Patil's first-hand experience building the LinkedIn data science team.

Data Driven
  • Language: en
  • Pages: 28

Data Driven

Succeeding with data isn’t just a matter of putting Hadoop in your machine room, or hiring some physicists with crazy math skills. It requires you to develop a data culture that involves people throughout the organization. In this O’Reilly report, DJ Patil and Hilary Mason outline the steps you need to take if your company is to be truly data-driven—including the questions you should ask and the methods you should adopt. You’ll not only learn examples of how Google, LinkedIn, and Facebook use their data, but also how Walmart, UPS, and other organizations took advantage of this resource long before the advent of Big Data. No matter how you approach it, building a data culture is the k...

Ethics and Data Science
  • Language: en
  • Pages: 37

Ethics and Data Science

As the impact of data science continues to grow on society there is an increased need to discuss how data is appropriately used and how to address misuse. Yet, ethical principles for working with data have been available for decades. The real issue today is how to put those principles into action. With this report, authors Mike Loukides, Hilary Mason, and DJ Patil examine practical ways for making ethical data standards part of your work every day. To help you consider all of possible ramifications of your work on data projects, this report includes: A sample checklist that you can adapt for your own procedures Five framing guidelines (the Five C’s) for building data products: consent, clarity, consistency, control, and consequences Suggestions for building ethics into your data-driven culture Now is the time to invest in a deliberate practice of data ethics, for better products, better teams, and better outcomes. Get a copy of this report and learn what it takes to do good data science today.

Data Jujitsu
  • Language: en
  • Pages: 26

Data Jujitsu

None

Hospital And Clinical Pharmacy
  • Language: en
  • Pages: 200

Hospital And Clinical Pharmacy

Hospitals - Hospital Pharmacy - Drug Distribution System in Hospitals - Procurement of Stores and Inventory Control - Hospital Manufacturing - Surgical Instruments, Medical Equipments and Health Accessories - Pharmacy and Therapeutic Committee and Hospital Formulary - Drug Information Services and Drug Information Bulletin - Surgical Dressings and Supplies - Computers - Introduction to Clinical Pharmacy - Modern Dispensing Aspects - Medical Terminology - Diseases, Manifestations and Symptoms - Physiological Parameters - Drug Interactions - Adverse Drug Reactions - Drugs in Clinical Toxicity - Drug Dependence - Bio-Availability of Drugs

Data Jujitsu: The Art of Turning Data into Product
  • Language: en
  • Pages: 16

Data Jujitsu: The Art of Turning Data into Product

Acclaimed data scientist DJ Patil details a new approach to solving problems in Data Jujitsu. Learn how to use a problem's "weight" against itself to: Break down seemingly complex data problems into simplified parts Use alternative data analysis techniques to examine them Use human input, such as Mechanical Turk, and design tricks that enlist the help of your users to take short cuts around tough problems Learn more about the problems before starting on the solutions—and use the findings to solve them, or determine whether the problems are worth solving at all.

Ethics and Data Science
  • Language: en
  • Pages: 40

Ethics and Data Science

As the impact of data science continues to grow on society there is an increased need to discuss how data is appropriately used and how to address misuse. Yet, ethical principles for working with data have been available for decades. The real issue today is how to put those principles into action. With this report, authors Mike Loukides, Hilary Mason, and DJ Patil examine practical ways for making ethical data standards part of your work every day. To help you consider all of possible ramifications of your work on data projects, this report includes: A sample checklist that you can adapt for your own procedures Five framing guidelines (the Five C’s) for building data products: consent, clarity, consistency, control, and consequences Suggestions for building ethics into your data-driven culture Now is the time to invest in a deliberate practice of data ethics, for better products, better teams, and better outcomes. Get a copy of this report and learn what it takes to do good data science today.

The Culture of Big Data
  • Language: en
  • Pages: 20

The Culture of Big Data

Technology does not exist in a vacuum. In the same way that a plant needs water and nourishment to grow, technology needs people and process to thrive and succeed. Culture (i.e., people and process) is integral and critical to the success of any new technology deployment or implementation. Big data is not just a technology phenomenon. It has a cultural dimension. It's vitally important to remember that most people have not considered the immense difference between a world seen through the lens of a traditional relational database system and a world seen through the lens of a Hadoop Distributed File System.This paper broadly describes the cultural challenges that accompany efforts to create and sustain big data initiatives in an evolving world whose data management processes are rooted firmly in traditional data warehouse architectures.

On Being a Data Skeptic
  • Language: en
  • Pages: 26

On Being a Data Skeptic

"Data is here, it's growing, and it's powerful." Author Cathy O'Neil argues that the right approach to data is skeptical, not cynical––it understands that, while powerful, data science tools often fail. Data is nuanced, and "a really excellent skeptic puts the term 'science' into 'data science.'" The big data revolution shouldn't be dismissed as hype, but current data science tools and models shouldn't be hailed as the end-all-be-all, either.

Data Smart
  • Language: en
  • Pages: 432

Data Smart

Data Science gets thrown around in the press like it'smagic. Major retailers are predicting everything from when theircustomers are pregnant to when they want a new pair of ChuckTaylors. It's a brave new world where seemingly meaningless datacan be transformed into valuable insight to drive smart businessdecisions. But how does one exactly do data science? Do you have to hireone of these priests of the dark arts, the "data scientist," toextract this gold from your data? Nope. Data science is little more than using straight-forward steps toprocess raw data into actionable insight. And in DataSmart, author and data scientist John Foreman will show you howthat's done within the familiar environ...