You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
A collection of 28 refereed papers grouped according to four broad topics: duality and optimality conditions, optimization algorithms, optimal control, and variational inequality and equilibrium problems. Suitable for researchers, practitioners and postgrads.
This book deals with optimality conditions, algorithms, and discretization tech niques for nonlinear programming, semi-infinite optimization, and optimal con trol problems. The unifying thread in the presentation consists of an abstract theory, within which optimality conditions are expressed in the form of zeros of optimality junctions, algorithms are characterized by point-to-set iteration maps, and all the numerical approximations required in the solution of semi-infinite optimization and optimal control problems are treated within the context of con sistent approximations and algorithm implementation techniques. Traditionally, necessary optimality conditions for optimization problems are...
The rapid evolution of computer science, communication, and information technology has enabled the application of control techniques to systems beyond the possibilities of control theory just a decade ago. Critical infrastructures such as electricity, water, traffic and intermodal transport networks are now in the scope of control engineers. The sheer size of such large-scale systems requires the adoption of advanced distributed control approaches. Distributed model predictive control (MPC) is one of the promising control methodologies for control of such systems. This book provides a state-of-the-art overview of distributed MPC approaches, while at the same time making clear directions of research that deserve more attention. The core and rationale of 35 approaches are carefully explained. Moreover, detailed step-by-step algorithmic descriptions of each approach are provided. These features make the book a comprehensive guide both for those seeking an introduction to distributed MPC as well as for those who want to gain a deeper insight in the wide range of distributed MPC techniques available.
This Encyclopedia of Control Systems, Robotics, and Automation is a component of the global Encyclopedia of Life Support Systems EOLSS, which is an integrated compendium of twenty one Encyclopedias. This 22-volume set contains 240 chapters, each of size 5000-30000 words, with perspectives, applications and extensive illustrations. It is the only publication of its kind carrying state-of-the-art knowledge in the fields of Control Systems, Robotics, and Automation and is aimed, by virtue of the several applications, at the following five major target audiences: University and College Students, Educators, Professional Practitioners, Research Personnel and Policy Analysts, Managers, and Decision Makers and NGOs.
This book presents the results of the second workshop on Neural Adaptive Control Technology, NACT II, held on September 9-10, 1996, in Berlin. The workshop was organised in connection with a three-year European-Union-funded Basic Research Project in the ESPRIT framework, called NACT, a collaboration between Daimler-Benz (Germany) and the University of Glasgow (Scotland).The NACT project, which began on 1 April 1994, is a study of the fundamental properties of neural-network-based adaptive control systems. Where possible, links with traditional adaptive control systems are exploited. A major aim is to develop a systematic engineering procedure for designing neural controllers for nonlinear dy...
Easy-to-follow learning structure makes absorption of advanced material as pain-free as possible Introduces complete theories for stability and cost monotonicity for constrained and non-linear systems as well as for linear systems In co-ordination with MATLAB® files available from springeronline.com, exercises and examples give the student more practice in the predictive control and filtering techniques presented
With a simple approach that includes real-time applications and algorithms, this book covers the theory of model predictive control (MPC).
This thesis addresses data-driven analysis as well as prediction-based design of aperiodic sampling in control systems. In many modern control applications, the traditional view of sampling and controlling in a periodic fashion must be abandoned due to varying transmission delays, data loss or uneven computational latencies. The effect of these undesired aperiodicities on the closed loop must thus be analyzed. In addition, a targeted aperiodic design of the sampling pattern, e.g. via event-triggered control (ETC), often allows for a better usage of bandwidth than periodic concepts. We consider both perspectives in this thesis. In particular, first we provide methods to analyze stability of control systems under arbitrary aperiodic sampling directly from recorded data. Previous approaches to this end required model knowledge, which might be challenging to obtain. Second, we propose a prediction-based approach for design of the aperiodic sampling pattern, called rollout ETC. This approach allows for predictability of the required communication resources and a guarantee of improved sample efficiency, which were both difficult to address in existing ETC schemes.
This book provides the fundamental underlying mathematical theory, numerical algorithms and effi cient computational tools for the solution of multi-level mixedinteger optimization problems. It can enable a vast array of decision makers and engineers (e.g. process engineers, bioengineers, chemical and civil engineers, and economists) to model, formulate and solve hierarchical decision making problems. The book gives detailed insights on multi-level optimization by comprehensive explanations, step-by-step numerical examples and case studies, plots, and diagrams.