You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
In writing the present book I have had in mind the following objectives: - To propose a theoretical, comprehensive view of the domain of intuition. - To identify and organize the experimental findings related to intuition scattered in a wide variety of research contexts. - To reveal the educational implications of the idea, developed for science and mathematics education. Most of the existing monographs in the field of intuition are mainly concerned with theoretical debates - definitions, philosophical attitudes, historical considerations. (See, especially the works of Wild (1938), of Bunge (1 962) and of Noddings and Shore (1 984).) A notable exception is the book by Westcott (1968), which combines theoretical analyses with the author’s own experimental studies. But, so far, no attempt has been made to identify systematically those findings, spread throughout the research literature, which could contribute to the deciphering of the mechanisms of intuition. Very often the relevant studies do not refer explicitly to intuition. Even when this term is used it occurs, usually, as a self-evident, common sense term.
What mathematics is entailed in knowing to act in a moment? Is tacit, rhetorical knowledge significant in mathematics education? What is the role of intuitive models in understanding, learning and teaching mathematics? Are there differences between elementary and advanced mathematical thinking? Why can't students prove? What are the characteristics of teachers' ways of knowing? This book focuses on various types of knowledge that are significant for learning and teaching mathematics. The first part defines, discusses and contrasts psychological, philosophical and didactical issues related to various types of knowledge involved in the learning of mathematics. The second part describes ideas a...
This volume contains four essays which may attract the attention of those readers, who are interested in mathematical cognition The main issues and questions addressed include: How do we achieve understanding of mathematical notions and ideas? What benefits can be obtained from mistakes of great mathematicians? Which mathematical objects are standard and which are pathological? Is it possible characterize the intended models of mathematical theories in a unique way?
Two of the most important concepts children develop progressively throughout their mathematics education years are additivity and multiplicativity. Additivity is associated with situations that involve adding, joining, affixing, subtracting, separating and removing. Multiplicativity is associated with situations that involve duplicating, shrinking, stressing, sharing equally, multiplying, dividing, and exponentiating. This book presents multiplicativity in terms of a multiplicative conceptual field (MCF), not as individual concepts. It is presented in terms of interrelations and dependencies within, between, and among multiplicative concepts. The authors share the view that research on the mathematical, cognitive, and instructional aspects of multiplicative concepts must be situated in an MCF framework.
This book focuses on aspects of mathematical beliefs, from a variety of different perspectives. Current knowledge of the field is synthesized and existing boundaries are extended. The volume is intended for researchers in the field, as well as for mathematics educators teaching the next generation of students.
The book presents the Invited Lectures given at 13th International Congress on Mathematical Education (ICME-13). ICME-13 took place from 24th- 31st July 2016 at the University of Hamburg in Hamburg (Germany). The congress was hosted by the Society of Didactics of Mathematics (Gesellschaft für Didaktik der Mathematik - GDM) and took place under the auspices of the International Commission on Mathematical Instruction (ICMI). ICME-13 – the biggest ICME so far - brought together about 3500 mathematics educators from 105 countries, additionally 250 teachers from German speaking countries met for specific activities. The scholars came together to share their work on the improvement of mathemati...
This unique volume surveys recent research on spatial visualization in mathematics in the fields of cognitive psychology and mathematics education. The general topic of spatial skill and mathematics has a long research tradition, but has been gaining attention in recent years, although much of this research happens in disconnected subfields. This volume aims to promote interaction between researchers, not only to provide a more comprehensive view of spatial visualization and mathematics, but also to stimulate innovative new directions in research based on a more coordinated effort. It features ten chapters authored by leading researchers in cognitive psychology and mathematics education, as ...
What makes information useful? This seemingly simple and yet intriguing and complicated question is discussed in this book. It examines ways in which the quality of information can be improved in knowledge-intensive processes (such as on-line communication, strategy, product development, or consulting). Based on existing information quality literature, the book proposes a conceptual framework to manage information quality for knowledge-based content. It presents four proven principles to apply the framework to a variety of information products. Five in-depth company case studies show how information quality can be managed systematically. The book uses frequent diagrams and tables, as well as diagnostic questions and summary boxes to make its content actionable.
If learners in the classroom are to be excited by mathematics, teachers need to be both well informed about current initiatives and able to see how what is expected of them can be translated into rich and stimulating classroom strategies. The book examines current initiatives that affect teaching mathematics and identifies pointers for action in the classroom. Divided into three major sections, it looks at: the changing mathematics classroom at primary, secondary and tertiary level major components of the secondary curriculum practical pedagogical issues of particular concern to mathematics teachers. Each issue is explores in terms of major underpinnings and research in that area, and practical ideas can be drawn from the text and implemented in the reader's classroom practice. Each chapter has been written by a well-respected writer, researcher and practitioner in their field and all share a common goal: to look thoughtfully and intelligently at some of the practical issues facing mathematics teachers and offer their perspectives on those issues.
The book presents the history of ICMI trough a prosopographical approach. In other words, it pays a lot of attention to the actors of the International movement. The portraits of the members of the ICMI Central Committees (1908-1936) and ICMI Executive Committees (1952-2008), and other eminent figures in ICMI history, who have passed away in the first 100 years of its life, are the guiding thread of the volume. Each portrait includes: · Biographical information · An outline of the various contributions made by the individual in question to the study of problems pertaining to mathematics teaching/education · Primary bibliography · Secondary with particular attention to the publications co...