You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book presents a broad, user-friendly introduction to the Langlands program, that is, the theory of automorphic forms and its connection with the theory of L-functions and other fields of mathematics. Each of the twelve chapters focuses on a particular topic devoted to special cases of the program. The book is suitable for graduate students and researchers.
This book concentrates on the final chapter of the story of perhaps the most famous mathematics problem of our time: Fermat's Last Theorem. The full story begins in 1637, with Pierre de Fermat's enigmatic marginal note in his copy of Diophantus's Arithmetica. It ends with the spectacular solution by Andrew Wiles some 350 years later. The Fermat Diary provides a record in pictures and words of the dramatic time from June 1993 to August 1995, including the period when Wiles completed the last stages of the proof and concluding with the mathematical world's celebration of Wiles' result at Boston University. This diary takes us through the process of discovery as reported by those who worked on ...
This book contains selected chapters on perfectoid spaces, their introduction and applications, as invented by Peter Scholze in his Fields Medal winning work. These contributions are presented at the conference on “Perfectoid Spaces” held at the International Centre for Theoretical Sciences, Bengaluru, India, from 9–20 September 2019. The objective of the book is to give an advanced introduction to Scholze’s theory and understand the relation between perfectoid spaces and some aspects of arithmetic of modular (or, more generally, automorphic) forms such as representations mod p, lifting of modular forms, completed cohomology, local Langlands program, and special values of L-functions. All chapters are contributed by experts in the area of arithmetic geometry that will facilitate future research in the direction.
The workshop aimed to deepen understanding of the interdependence between p-adic Hodge theory, analogues of the conjecture of Birch and Swinnerton-Dyer, p-adic uniformization theory, p-adic differential equations, and deformations of Gaels representations.
This book offers a modern exposition of the arithmetical properties of local fields using explicit and constructive tools and methods. It has been ten years since the publication of the first edition, and, according to Mathematical Reviews, 1,000 papers on local fields have been published during that period. This edition incorporates improvements to the first edition, with 60 additional pages reflecting several aspects of the developments in local number theory. The volume consists of four parts: elementary properties of local fields, class field theory for various types of local fields and generalizations, explicit formulas for the Hilbert pairing, and Milnor -groups of fields and of local ...
This volume contains the expanded lectures given at a conference on number theory and arithmetic geometry held at Boston University. It introduces and explains the many ideas and techniques used by Wiles, and to explain how his result can be combined with Ribets theorem and ideas of Frey and Serre to prove Fermats Last Theorem. The book begins with an overview of the complete proof, followed by several introductory chapters surveying the basic theory of elliptic curves, modular functions and curves, Galois cohomology, and finite group schemes. Representation theory, which lies at the core of the proof, is dealt with in a chapter on automorphic representations and the Langlands-Tunnell theorem, and this is followed by in-depth discussions of Serres conjectures, Galois deformations, universal deformation rings, Hecke algebras, and complete intersections. The book concludes by looking both forward and backward, reflecting on the history of the problem, while placing Wiles'theorem into a more general Diophantine context suggesting future applications. Students and professional mathematicians alike will find this an indispensable resource.
This book is the fruit of a symposium in honor of Ted Eisenberg concerning the growing divide between the mathematics community and the mathematics education community, a divide that is clearly unhealthy for both. The work confronts this disturbing gap by considering the nature of the relationship between mathematics education and mathematics, and by examining areas of commonality as well as disagreement. It seeks to provide insight into the mutual benefit both stand to gain by building bridges based on the natural bonds between them.
First Joint International Meeting of the Israel Mathematical Union and the Mexican Mathematical Society Program
4e de couverture : "These proceedings contain most of the contributions to the Göttingen-Jerusalem Conference 2008 on "Symmetries in Algebra and Number Theory" including three addresses given at the conference opening, and two contributions to the Satellite Conference "On the Legacy of Hermann Weyl". The contributions are survey articles or report on recent work by the authors, for exemple new results on the famous Leopoldt conjecture."