You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Data Mining: Practical Machine Learning Tools and Techniques, Fifth Edition, offers a thorough grounding in machine learning concepts, along with practical advice on applying these tools and techniques in real-world data mining situations. This highly anticipated new edition of the most acclaimed work on data mining and machine learning teaches readers everything they need to know to get going, from preparing inputs, interpreting outputs, evaluating results, to the algorithmic methods at the heart of successful data mining approaches.Extensive updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including more recent deep learnin...
Data Mining, Second Edition, describes data mining techniques and shows how they work. The book is a major revision of the first edition that appeared in 1999. While the basic core remains the same, it has been updated to reflect the changes that have taken place over five years, and now has nearly double the references. The highlights of this new edition include thirty new technique sections; an enhanced Weka machine learning workbench, which now features an interactive interface; comprehensive information on neural networks; a new section on Bayesian networks; and much more. This text is designed for information systems practitioners, programmers, consultants, developers, information technology managers, specification writers as well as professors and students of graduate-level data mining and machine learning courses. - Algorithmic methods at the heart of successful data mining—including tried and true techniques as well as leading edge methods - Performance improvement techniques that work by transforming the input or output
Data Mining: Practical Machine Learning Tools and Techniques, Third Edition, offers a thorough grounding in machine learning concepts as well as practical advice on applying machine learning tools and techniques in real-world data mining situations. This highly anticipated third edition of the most acclaimed work on data mining and machine learning will teach you everything you need to know about preparing inputs, interpreting outputs, evaluating results, and the algorithmic methods at the heart of successful data mining. Thorough updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including new material on Data Transformations,...
Data Mining: Practical Machine Learning Tools and Techniques, Fourth Edition, offers a thorough grounding in machine learning concepts, along with practical advice on applying these tools and techniques in real-world data mining situations. This highly anticipated fourth edition of the most acclaimed work on data mining and machine learning teaches readers everything they need to know to get going, from preparing inputs, interpreting outputs, evaluating results, to the algorithmic methods at the heart of successful data mining approaches. Extensive updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including substantial new cha...
Examines the design and use of Intrusion Detection Systems (IDS) to secure Supervisory Control and Data Acquisition (SCADA) systems Cyber-attacks on SCADA systems the control system architecture that uses computers, networked data communications, and graphical user interfaces for high-level process supervisory management can lead to costly financial consequences or even result in loss of life. Minimizing potential risks and responding to malicious actions requires innovative approaches for monitoring SCADA systems and protecting them from targeted attacks. SCADA Security: Machine Learning Concepts for Intrusion Detection and Prevention is designed to help security and networking professional...
Information Modeling and Relational Databases, Second Edition, provides an introduction to ORM (Object-Role Modeling)and much more. In fact, it is the only book to go beyond introductory coverage and provide all of the in-depth instruction you need to transform knowledge from domain experts into a sound database design. This book is intended for anyone with a stake in the accuracy and efficacy of databases: systems analysts, information modelers, database designers and administrators, and programmers. Terry Halpin, a pioneer in the development of ORM, blends conceptual information with practical instruction that will let you begin using ORM effectively as soon as possible. Supported by examp...
The three volume proceedings LNAI 11051 – 11053 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2018, held in Dublin, Ireland, in September 2018. The total of 131 regular papers presented in part I and part II was carefully reviewed and selected from 535 submissions; there are 52 papers in the applied data science, nectar and demo track. The contributions were organized in topical sections named as follows: Part I: adversarial learning; anomaly and outlier detection; applications; classification; clustering and unsupervised learning; deep learning; ensemble methods; and evaluation. Part II: graphs; kernel methods; learning paradigms; matrix and tensor analysis; online and active learning; pattern and sequence mining; probabilistic models and statistical methods; recommender systems; and transfer learning. Part III: ADS data science applications; ADS e-commerce; ADS engineering and design; ADS financial and security; ADS health; ADS sensing and positioning; nectar track; and demo track.
We are glad to present the proceedings of the 5th biennial conference in the Intelligent Data Analysis series. The conference took place in Berlin, Germany, August 28–30, 2003. IDA has by now clearly grown up. Started as a small si- symposium of a larger conference in 1995 in Baden-Baden (Germany) it quickly attractedmoreinterest(bothsubmission-andattendance-wise),andmovedfrom London (1997) to Amsterdam (1999), and two years ago to Lisbon. Submission ratesalongwiththeeverimprovingqualityofpapershaveenabledtheor- nizers to assemble increasingly consistent and high-quality programs. This year we were again overwhelmed by yet another record-breaking submission rate of 180 papers. At the Progr...
Argumentation, which has long been a topic of study in philosophy, has become a well-established aspect of computing science in the last 20 years. This book presents the proceedings of the fifth conference on Computational Models of Argument (COMMA), held in Pitlochry, Scotland in September 2014. Work on argumentation is broad, but the COMMA community is distinguished by virtue of its focus on the computational and mathematical aspects of the subject. This focus aims to ensure that methods are sound – that they identify arguments that are correct in some sense – and provide an unambiguous specification for implementation; producing programs that reason in the correct way and building systems capable of natural argument or of recognizing argument. The book contains 24 long papers and 18 short papers, and the 21 demonstrations presented at the conference are represented in the proceedings either by an extended abstract or by association with another paper. The book will be of interest to all those whose work involves argumentation as it relates to artificial intelligence.
The goal of the chapters in this SIOP Organizational Frontiers Series volume is to challenge researchers to break away from the rote application of traditional methodologies and to capitalize upon the wealth of data collection and analytic strategies available to them. In that spirit, many of the chapters in this book deal with methodologies that encourage organizational scientists to re-conceptualize phenomena of interest (e.g., experience sampling, catastrophe modeling), employ novel data collection strategies (e.g., data mining, Petri nets), and/or apply sophisticated analytic techniques (e.g., latent class analysis). The editors believe that these chapters provide compelling solutions for the complex problems faced by organizational researchers.