You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book offers a considered yet entertaining reflection on the progress of modern scientific research. The winding path of science can only be understood by revealing the personal, human side of scientific research, demystifying the actions of the scientist and exposing the human drama on the stage of science. The book looks at the true nature of contemporary science and scientists through the lens of the personal experiences of the author, a renowned and leading materials scientist, over the last half century. It examines the positive threads of modern scientific progress in sober juxtaposition to the manifest negative developments arising from stiff competition within the current academic landscape. A collection of stories and real-life anecdotes is presented in parallel to the career of the author, providing a first-hand account of important achievements in the field of materials science. As a result, this book provides fascinating reading for students, seasoned scientists, and anybody else interested in the workings and machinations of modern science.
This textbook offers a strong introduction to the fundamental concepts of materials science. It conveys the quintessence of this interdisciplinary field, distinguishing it from merely solid-state physics and solid-state chemistry, using metals as model systems to elucidate the relation between microstructure and materials properties. Mittemeijer's Fundamentals of Materials Science provides a consistent treatment of the subject matter with a special focus on the microstructure-property relationship. Richly illustrated and thoroughly referenced, it is the ideal adoption for an entire undergraduate, and even graduate, course of study in materials science and engineering. It delivers a solid bac...
Thermochemical surface engineering significantly improves the properties of steels. Edited by two of the world s leading authorities, this important book summarises the range of techniques and their applications. It covers nitriding, nitrocarburizing and carburizing. There are also chapters on low temperature techniques as well as boriding, sheradizing, aluminizing, chromizing, thermo-reactive deposition and diffusion. Reviews the fundamentals of surface treatments and current performance of improved materialsCovers nitriding, nitrocarburizing and carburizing of iron and iron carbon alloysExamines how different thermochemical surface engineering methods can help against corrosion"
Overview of diffraction methods applied to the analysis of the microstructure of materials. Since crystallite size and the presence of lattice defects have a decisive influence on the properties of many engineering materials, information about this microstructure is of vital importance in developing and assessing materials for practical applications. The most powerful and usually non-destructive evaluation techniques available are X-ray and neutron diffraction. The book details, among other things, diffraction-line broadening methods for determining crystallite size and atomic-scale strain due, e.g. to dislocations, and methods for the analysis of residual (macroscale) stress. The book assumes only a basic knowledge of solid-state physics and supplies readers sufficient information to apply the methods themselves.
The role of diffraction methods for the solid-state sciences has been pivotal to determining the (micro)structure of a material. Particularly, the expanding activities in materials science have led to the development of new methods for analysis by diffraction. This book offers an authoritative overview of the new developments in the field of analysis of matter by (in particular X-ray, electron and neutron) diffraction. It is composed of chapters written by leading experts on 'modern diffraction methods'. The focus in the various chapters of this book is on the current forefront of research on and applications for diffraction methods. This unique book provides descriptions of the 'state of the art' and, at the same time, identifies avenues for future research. The book assumes only a basic knowledge of solid-state physics and allows the application of the described methods by the readers of the book (either graduate students or mature scientists).
This book offers a strong introduction to fundamental concepts on the basis of materials science. It conveys the central issue of materials science, distinguishing it from merely solid state physics and solid state chemistry, namely to develop models that provide the relation between the microstructure and the properties. The book is meant to be used in the beginning of a materials science and engineering study as well as throughout an entire undergraduate and even graduate study as a solid background against which specialized texts can be studied. Topics dealt with are "crystallography", "lattice defects", "microstructural analysis", "phase equilibria and transformations" and "mechanical strength". After the basic chapters the coverage of topics occurs to an extent surpassing what can be offered in a freshman's course. About the author Prof. Mittemeijer is one of the top scientists in materials science, whose perceptiveness and insight have led to important achievements. This book witnesses of his knowledge and panoramic overview and profound understanding of the field. He is a director of the Max Planck Institute for Metals Research in Stuttgart.
Crystalline semiconductors in the form of thin films are crucial materials for many modern, advanced technologies in fields such as microelectronics, optoelectronics, display technology, and photovoltaic technology. Crystalline semiconductors can be produced at surprisingly low temperatures (as low as 120C) by crystallization of amorphous semicon
This book follows a model of modern pedagogy. It is interdisciplinary and uses specific examples to teach general principles. This text is organized into three main sections. The first section reviews aspects of solid mechanics, with topics normally covered in standard materials courses but also dealing with purer mechanics concepts of relevance in materials science. The second section deals with analytical and computational ideas. The third section is called Experimental Method though it is really a series of examples based on Prof. Prawoto's personal experience. This type of presentation- the use of particular examples to demonstrate broader concepts - is powerful.
Zeitschrift für Kristallographie. Supplement Volume 30 presents the complete Proceedings of all contributions to the XI European Powder Diffraction Conference in Warsaw 2008: Method Development and Application Instrumental Software Development Materials Supplement Series of Zeitschrift für Kristallographie publishes Proceedings and Abstracts of international conferences on the interdisciplinary field of crystallography.
By illustrating a wide range of specific applications in all major industries, this work broadens the coverage of X-ray diffraction beyond basic tenets, research and academic principles. The book serves as a guide to solving problems faced everyday in the laboratory, and offers a review of the current theory and practice of X-ray diffraction, major advances and potential uses.