Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Independent Component Analysis
  • Language: en
  • Pages: 505

Independent Component Analysis

A comprehensive introduction to ICA for students and practitioners Independent Component Analysis (ICA) is one of the most exciting new topics in fields such as neural networks, advanced statistics, and signal processing. This is the first book to provide a comprehensive introduction to this new technique complete with the fundamental mathematical background needed to understand and utilize it. It offers a general overview of the basics of ICA, important solutions and algorithms, and in-depth coverage of new applications in image processing, telecommunications, audio signal processing, and more. Independent Component Analysis is divided into four sections that cover: * General mathematical concepts utilized in the book * The basic ICA model and its solution * Various extensions of the basic ICA model * Real-world applications for ICA models Authors Hyvarinen, Karhunen, and Oja are well known for their contributions to the development of ICA and here cover all the relevant theory, new algorithms, and applications in various fields. Researchers, students, and practitioners from a variety of disciplines will find this accessible volume both helpful and informative.

Structural, Syntactic, and Statistical Pattern Recognition
  • Language: en
  • Pages: 1187

Structural, Syntactic, and Statistical Pattern Recognition

This book constitutes the refereed proceedings of the 10th International Workshop on Structural and Syntactic Pattern Recognition, SSPR 2004 and the 5th International Workshop on Statistical Techniques in Pattern Recognition, SPR 2004, held jointly in Lisbon, Portugal, in August 2004. The 59 revised full papers and 64 revised poster papers presented together with 4 invited papers were carefully reviewed and selected from 219 submissions. The papers are organized in topical sections on graphs; visual recognition and detection; contours, lines, and paths; matching and superposition; transduction and translation; image and video analysis; syntactics, languages, and strings; human shape and action; sequences and graphs; pattern matching and classification; document image analysis; shape analysis; multiple classifier systems; density estimation; clustering; feature selection; classification; and representation.

Condition Monitoring and Diagnostic Engineering Management
  • Language: en
  • Pages: 1021

Condition Monitoring and Diagnostic Engineering Management

  • Type: Book
  • -
  • Published: 2001-09-14
  • -
  • Publisher: Elsevier

This Proceedings contains the papers presented at the 14th International Conference on Condition Monitoring and Diagnostic Engineering Management (COMADEM 2001), held in Manchester, UK, on 4-6 September 2001. COMADEM 2001 builds on the excellent reputation of previous conferences in this series, and is essential for anyone working in the field of condition monitoring and maintenance management.The scope of the conference is truly interdisciplinary. The Proceedings contains papers from six continents, written by experts in industry and academia the world over, bringing together the latest thoughts on topics including: Condition-based maintenance Reliability centred maintenance Asset managemen...

Unsupervised Learning
  • Language: en
  • Pages: 420

Unsupervised Learning

  • Type: Book
  • -
  • Published: 1999-05-24
  • -
  • Publisher: MIT Press

Since its founding in 1989 by Terrence Sejnowski, Neural Computation has become the leading journal in the field. Foundations of Neural Computation collects, by topic, the most significant papers that have appeared in the journal over the past nine years. This volume of Foundations of Neural Computation, on unsupervised learning algorithms, focuses on neural network learning algorithms that do not require an explicit teacher. The goal of unsupervised learning is to extract an efficient internal representation of the statistical structure implicit in the inputs. These algorithms provide insights into the development of the cerebral cortex and implicit learning in humans. They are also of interest to engineers working in areas such as computer vision and speech recognition who seek efficient representations of raw input data.

Intelligent Data Engineering and Automated Learning - IDEAL 2000. Data Mining, Financial Engineering, and Intelligent Agents
  • Language: en
  • Pages: 576

Intelligent Data Engineering and Automated Learning - IDEAL 2000. Data Mining, Financial Engineering, and Intelligent Agents

  • Type: Book
  • -
  • Published: 2003-07-31
  • -
  • Publisher: Springer

X Table of Contents Table of Contents XI XII Table of Contents Table of Contents XIII XIV Table of Contents Table of Contents XV XVI Table of Contents K.S. Leung, L.-W. Chan, and H. Meng (Eds.): IDEAL 2000, LNCS 1983, pp. 3›8, 2000. Springer-Verlag Berlin Heidelberg 2000 4 J. Sinkkonen and S. Kaski Clustering by Similarity in an Auxiliary Space 5 6 J. Sinkkonen and S. Kaski Clustering by Similarity in an Auxiliary Space 7 0.6 1.5 0.4 1 0.2 0.5 0 0 10 100 1000 10000 10 100 1000 Mutual information (bits) Mutual information (bits) 8 J. Sinkkonen and S. Kaski 20 10 0 0.1 0.3 0.5 0.7 Mutual information (mbits) Analyses on the Generalised Lotto-Type Competitive Learning Andrew Luk St B&P Neural ...

Advances in Handwriting Recognition
  • Language: en
  • Pages: 604

Advances in Handwriting Recognition

Frontiers in Handwriting Recognition contains selected key papers from the 6th International Workshop on Frontiers in Handwriting Recognition (IWFHR '98), held in Taejon, Korea from 12 to 14, August 1998. Most of the papers have been expanded or extensively revised to include helpful discussions, suggestions or comments made during the workshop.

Fundamentals of Computational Neuroscience
  • Language: en
  • Pages: 417

Fundamentals of Computational Neuroscience

The new edition of Fundamentals of Computational Neuroscience build on the success and strengths of the first edition. Completely redesigned and revised, it introduces the theoretical foundations of neuroscience with a focus on the nature of information processing in the brain.

Image Analysis
  • Language: en
  • Pages: 1289

Image Analysis

  • Type: Book
  • -
  • Published: 2005-06-30
  • -
  • Publisher: Springer

This proceedings volume collects the scienti?c presentations of the Scandinavian Conference on Image Analysis, SCIA 2005, which was held at the University of Joensuu, Finland, June 19–22, 2005. The conference was the fourteenth in the series of biennial conferences started in 1980. The name of the series re?ects the fact that the conferences are organized in the Nordic (Scandinavian) countries, following the cycle Sweden, Finland, Denmark, and Norway. The event itself has always been international in its participants and presentations. Today there are many conferences in the ?elds related to SCIA. In this s- uation our goal is to keep up the reputation for the high quality and friendly env...

Mathematical Nonlinear Image Processing
  • Language: en
  • Pages: 173

Mathematical Nonlinear Image Processing

Mathematical Nonlinear Image Processing deals with a fast growing research area. The development of the subject springs from two factors: (1) the great expansion of nonlinear methods applied to problems in imaging and vision, and (2) the degree to which nonlinear approaches are both using and fostering new developments in diverse areas of mathematics. Mathematical Nonlinear Image Processing will be of interest to people working in the areas of applied mathematics as well as researchers in computer vision. Mathematical Nonlinear Image Processing is an edited volume of original research. It has also been published as a special issue of the Journal of Mathematical Imaging and Vision. (Volume 2, Issue 2/3).

Independent Component Analysis and Blind Signal Separation
  • Language: en
  • Pages: 1287

Independent Component Analysis and Blind Signal Separation

tionsalso,apartfromsignalprocessing,withother?eldssuchasstatisticsandarti?cial neuralnetworks. As long as we can ?nd a system that emits signals propagated through a mean, andthosesignalsarereceivedbyasetofsensorsandthereisaninterestinrecovering the originalsources,we have a potential?eld ofapplication forBSS and ICA. Inside thatwiderangeofapplicationswecan?nd,forinstance:noisereductionapplications, biomedicalapplications,audiosystems,telecommunications,andmanyothers. This volume comes out just 20 years after the ?rst contributionsin ICA and BSS 1 appeared . Thereinafter,the numberof research groupsworking in ICA and BSS has been constantly growing, so that nowadays we can estimate that far more than 100 groupsareresearchinginthese?elds. Asproofoftherecognitionamongthescienti?ccommunityofICAandBSSdev- opmentstherehavebeennumerousspecialsessionsandspecialissuesinseveralwell- 1 J.Herault, B.Ans,“Circuits neuronaux à synapses modi?ables: décodage de messages c- posites para apprentissage non supervise”, C.R. de l'Académie des Sciences, vol. 299, no. III-13,pp.525–528,1984.