You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The use of lasers in material processing has become a useful method for transforming industrial materials into finished products. The benefits of laser material processing are vast, including increased precision, high processing speed, and dustless cutting and drilling. Advanced Manufacturing Techniques Using Laser Material Processing explores the latest methodologies for using lasers in materials manufacturing and production, the benefits of using lasers in industrial settings, as well as future outlooks for this technology. This innovative publication is an essential reference source for professionals, researchers, and graduate-level students studying manufacturing technologies and industrial engineering.
This book presents the concept of functionally graded materials as well as their use and different fabrication processes. The authors describe the use of additive manufacturing technology for the production of very complex parts directly from the three dimension computer aided design of the part by adding material layer after layer. A case study is also presented in the book on the experimental analysis of functionally graded material using laser metal deposition process.
This book introduces numerical methods for processing datasets which may be of any form, illustrating adequately computational resolution of environmental alongside the use of open source libraries. This book solves the challenges of misrepresentation of datasets that are relevant directly or indirectly to the research. It illustrates new ways of screening datasets or images for maximum utilization. The adoption of various numerical methods in dataset treatment would certainly create a new scientific approach. The book enlightens researchers on how to analyse measurements to ensure 100% utilization. It introduces new ways of data treatment that are based on a sound mathematical and computational approach.
This book is intended for use both in the industry and the academia. It introduces the physical, chemical and the mechanical properties as well as the characterization of bamboo. Novel industrial applications in structural, non-structural, reinforcement, afforestation, land reclamation, environmental significance, textile, medical, geotechnical, hydraulic, food, pulp and the paper industries are addressed in detail. Bamboo has been used for centuries as a structural material as well as in diverse engineering applications, food and medicinal purposes, especially in Asia. As a natural fiber composite, bamboo has the potential for many developments in academic and industrial research. Current literature on composites tends to focus on bamboo as a plant or solely as a structural engineering material. This book seeks to bring together these two extremes and provides a holistic resource on the subject.
This book comprises select papers presented at the International Conference on Mechanical Engineering Design (ICMechD) 2019. The volume focuses on the different design aspects involved in manufacturing, composite materials processing as well as in engineering management. A wide range of topics such as control and automation, mechatronics, robotics, composite and nanomaterial design, and welding design are covered here. The book also discusses current research in engineering management on topics like products, services and system design, optimization in design, manufacturing planning and control, and sustainable product design. Given the range of the contents, this book will prove useful to students, researchers and practitioners.
This book comprises select papers presented at the International Conference on Mechanical Engineering Design (ICMechD) 2019. The volume focuses on the recent trends in design research and their applications across the mechanical and biomedical domain. The book covers topics like tribology design, mechanism and machine design, wear and surface engineering, vibration and noise engineering, biomechanics and biomedical engineering, industrial thermodynamics, and thermal engineering. Case studies citing practical challenges and their solutions using appropriate techniques and modern engineering tools are also discussed. Given its contents, this book will prove useful to students, researchers as well as practitioners.
Temporary structures are a vital but often overlooked component in the success of any construction project. With the assistance of modern technology, design and operation procedures in this area have undergone significant enhancements in recent years. Design Solutions and Innovations in Temporary Structures is a comprehensive source of academic research on the latest methods, practices, and analyses for effective and safe temporary structures. Including perspectives on numerous relevant topics, such as safety considerations, quality management, and structural analysis, this book is ideally designed for engineers, professionals, academics, researchers, and practitioners actively involved in the construction industry.
Hierarchical Composite Materials provides an in-depth analysis of a class of advanced composites that have properties that are anisotropic due to structural organization at different length scales. Chapters address how ordering occurs from the atomic-scale up to the microstructure and how control of these factors leads to the final materials' properties. Manufacturing procedures, properties, and applications of different functionally graded materials are discussed in detail. This book is ideal for materials scientists, mechanical engineers, chemists and physicists.
The rail-based transit system is a popular public transportation option, not just with members of the public but also with policy makers looking to install a form of convenient and rapid travel. Even for moving bulk freight long distances, a rail-based system is the most sustainable transportation system currently available. The Handbook of Research on Emerging Innovations in Rail Transportation Engineering presents the latest research on next-generation public transportation infrastructures. Emphasizing a diverse set of topics related to rail-based transportation such as funding issues, policy design, traffic planning and forecasting, and engineering solutions, this comprehensive publication is an essential resource for transportation planners, engineers, policymakers, and graduate-level engineering students interested in uncovering research-based solutions, recommendations, and examples of modern rail transportation systems.
Diamond-like carbons (DLCs) display a number of attractive properties that make them versatile coating materials for a variety of applications, including extremely high hardness values, very low friction properties, very low gas permeability, good biocompatibility, and very high electrical resistivity, among others. Further research into this material is required to produce hydrogen-free DLC films and to synthesize it together with other materials, thereby obtaining better film properties. Diamond-Like Carbon Coatings: Technologies and Applications examines emerging manufacturing technologies for DLCs with the aim of improving their properties for use in practical applications. Discusses DLC...