You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
1. Hyperbolic equations with random boundary conditions / Zdzisław Brzeźniak and Szymon Peszat -- 2. Decoherent information of quantum operations / Xuelian Cao, Nan Li and Shunlong Luo -- 3. Stabilization of evolution equations by noise / Tomás Caraballo and Peter E. Kloeden -- 4. Stochastic quantification of missing mechanisms in dynamical systems / Baohua Chen and Jinqiao Duan -- 5. Banach space-valued functionals of white noise / Yin Chen and Caishi Wang -- 6. Hurst index estimation for self-similar processes with long-memory / Alexandra Chronopoulou and Frederi G. Viens -- 7. Modeling colored noise by fractional Brownian motion / Jinqiao Duan, Chujin Li and Xiangjun Wang -- 8. A suffi...
CUTTING-EDGE DEVELOPMENTS IN HIGH-FREQUENCY FINANCIAL ECONOMETRICS In recent years, the availability of high-frequency data and advances in computing have allowed financial practitioners to design systems that can handle and analyze this information. Handbook of Modeling High-Frequency Data in Finance addresses the many theoretical and practical questions raised by the nature and intrinsic properties of this data. A one-stop compilation of empirical and analytical research, this handbook explores data sampled with high-frequency finance in financial engineering, statistics, and the modern financial business arena. Every chapter uses real-world examples to present new, original, and relevant ...
This volume contains refereed research or review papers presented at the 5th Seminar on Stochastic Processes, Random Fields and Applications, which took place at the Centro Stefano Franscini (Monte Verità) in Ascona, Switzerland, from May 29 to June 3, 2004. The seminar focused mainly on stochastic partial differential equations, stochastic models in mathematical physics, and financial engineering.
This book presents in thirteen refereed survey articles an overview of modern activity in stochastic analysis, written by leading international experts. The topics addressed include stochastic fluid dynamics and regularization by noise of deterministic dynamical systems; stochastic partial differential equations driven by Gaussian or Lévy noise, including the relationship between parabolic equations and particle systems, and wave equations in a geometric framework; Malliavin calculus and applications to stochastic numerics; stochastic integration in Banach spaces; porous media-type equations; stochastic deformations of classical mechanics and Feynman integrals and stochastic differential eq...
The Model-Free Prediction Principle expounded upon in this monograph is based on the simple notion of transforming a complex dataset to one that is easier to work with, e.g., i.i.d. or Gaussian. As such, it restores the emphasis on observable quantities, i.e., current and future data, as opposed to unobservable model parameters and estimates thereof, and yields optimal predictors in diverse settings such as regression and time series. Furthermore, the Model-Free Bootstrap takes us beyond point prediction in order to construct frequentist prediction intervals without resort to unrealistic assumptions such as normality. Prediction has been traditionally approached via a model-based paradigm, i...
None
This book covers an extensive class of models involving inhomogeneous Poisson processes and deals with their identification, i.e. the solution of certain estimation or hypothesis testing problems based on the given dataset. These processes are mathematically easy-to-handle and appear in numerous disciplines, including astronomy, biology, ecology, geology, seismology, medicine, physics, statistical mechanics, economics, image processing, forestry, telecommunications, insurance and finance, reliability, queuing theory, wireless networks, and localisation of sources. Beginning with the definitions and properties of some fundamental notions (stochastic integral, likelihood ratio, limit theorems,...
This volume represents the proceedings of the Workshop on Numerical Methods and Stochastics held at The Fields Institute in April 1999. The goal of the workshop was to identify emerging ideas in probability theory that influence future work in both probability and numerical computation. The book focuses on up-to-date results and gives novel approaches to computational problems based on cutting-edge techniques from the theory of probability and stochastic processes. Three papers discuss particle system approximations to solutions of the stochastic filtering problem. Two papers treat particle system equations. The paper on rough paths describes how to generate good approximations to stochastic integrals. An expository paper discusses a long-standing conjecture: the stochastic fast dynamo effect. A final paper gives an analysis of the error in binomial and trinomial approximations to solutions of the Black-Scholes stochastic differential equations. The book is intended for graduate students and research mathematicians interested in probability theory.