You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume presents the lecture notes from the authors’ three summer courses offered during the program “Automorphisms of Free Groups: Geometry, Topology, and Dynamics,” held at the Centre de Recerca Matemàtica (CRM) in Bellaterra, Spain. The first two chapters present the basic tools needed, from formal language theory (regular and context-free languages, automata, rewriting systems, transducers, etc) and emphasize their connections to group theory, mostly relating to free and virtually-free groups. The material covered is sufficient to present full proofs of many of the existing interesting characterizations of virtually-free groups. In turn, the last chapter comprehensively describes Bonahon’s construction of Thurston’s compactification of Teichmüller space in terms of geodesic currents on surfaces. It also includes several intriguing extensions of the notion of geodesic current to various other, more general settings.
The automorphisms of a two-generator free group F acting on the space of orientation-preserving isometric actions of F on hyperbolic 3-space defines a dynamical system. Those actions which preserve a hyperbolic plane but not an orientation on that plane is an invariant subsystem, which reduces to an action of a group on by polynomial automorphisms preserving the cubic polynomial and an area form on the level surfaces .
"Volume 212, number 999 (end of volume)."
This book presents an account of recent results on the theory of representations and the harmonic analysis of free groups. It emphasizes the analogy with the theory of representations of noncompact semisimple Lie groups and restricts the focus to a class of irreducible unitary representations.
Written by one of the subject’s foremost experts, this book focuses on the central developments and modern methods of the advanced theory of abelian groups, while remaining accessible, as an introduction and reference, to the non-specialist. It provides a coherent source for results scattered throughout the research literature with lots of new proofs. The presentation highlights major trends that have radically changed the modern character of the subject, in particular, the use of homological methods in the structure theory of various classes of abelian groups, and the use of advanced set-theoretical methods in the study of un decidability problems. The treatment of the latter trend includ...
This book complements the authors’ monograph Cellular Automata and Groups [CAG] (Springer Monographs in Mathematics). It consists of more than 600 fully solved exercises in symbolic dynamics and geometric group theory with connections to geometry and topology, ring and module theory, automata theory and theoretical computer science. Each solution is detailed and entirely self-contained, in the sense that it only requires a standard undergraduate-level background in abstract algebra and general topology, together with results established in [CAG] and in previous exercises. It includes a wealth of gradually worked out examples and counterexamples presented here for the first time in textbook form. Additional comments provide some historical and bibliographical information, including an account of related recent developments and suggestions for further reading. The eight-chapter division from [CAG] is maintained. Each chapter begins with a summary of the main definitions and results contained in the corresponding chapter of [CAG]. The book is suitable either for classroom or individual use. Foreword by Rostislav I. Grigorchuk
Representing the wealth and diversity of group theory for experienced researchers as well as new postgraduates, this two-volume book contains selected papers from the international conference which was held at University College Galway in August 1993.
This volume contains the proceedings of the AMS Special Session on Computational Algebra, Groups, and Applications, held April 30-May 1, 2011, at the University of Nevada, Las Vegas, Nevada, and the AMS Special Session on the Mathematical Aspects of Cryptography and Cyber Security, held September 10-11, 2011, at Cornell University, Ithaca, New York. Over the past twenty years combinatorial and infinite group theory has been energized by three developments: the emergence of geometric and asymptotic group theory, the development of algebraic geometry over groups leading to the solution of the Tarski problems, and the development of group-based cryptography. These three areas in turn have had an impact on computational algebra and complexity theory. The papers in this volume, both survey and research, exhibit the tremendous vitality that is at the heart of group theory in the beginning of the twenty-first century as well as the diversity of interests in the field.
Infinite Abelian Groups