You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Contains proceedings that reflects the 2001 Ahlfors-Bers Colloquium held at the University of Connecticut (Storrs). This book is suitable for graduate students and researchers interested in complex analysis.
"Mathematicians David Fisher, Dmitry Kleinbock, and Gregory Soifer highlight in this edited collection the foundations and evolution of research by mathematician Gregory Margulis. Margulis is unusual in the degree to which his solutions to particular problems have opened new vistas of mathematics. Margulis' ideas were central, for example, to developments that led to the recent Fields Medals of Elon Lindenstrauss and Maryam Mirzhakhani. The broad goal of this volume is to introduce these areas, their development, their use in current research, and the connections between them. The foremost experts on the topic have written each of the chapters in this volume with a view to making them accessible by graduate students and by experts in other parts of mathematics"--
This study of hyperbolic geometry has both pedagogy and research in mind, and includes exercises and further reading for each chapter.
The subject of Kleinian groups and hyperbolic 3-manifolds is currently undergoing explosively fast development. This volume contains important expositions on topics such as topology and geometry of 3-manifolds, curve complexes, classical Ahlfors-Bers theory and computer explorations. Researchers in these and related areas will find much of interest here.
There is an essentially ``tinker-toy'' model of a trivial bundle over the classical Teichmuller space of a punctured surface, called the decorated Teichmuller space, where the fiber over a point is the space of all tuples of horocycles, one about each puncture. This model leads to an extension of the classical mapping class groups called the Ptolemy groupoids and to certain matrix models solving related enumerative problems, each of which has proved useful both in mathematics and in theoretical physics. These spaces enjoy several related parametrizations leading to a rich and intricate algebro-geometric structure tied to the already elaborate combinatorial structure of the tinker-toy model. ...
Nigel Hitchin is one of the world's foremost figures in the fields of differential and algebraic geometry and their relations with mathematical physics, and he has been Savilian Professor of Geometry at Oxford since 1997. Geometry and Physics: A Festschrift in honour of Nigel Hitchin contain the proceedings of the conferences held in September 2016 in Aarhus, Oxford, and Madrid to mark Nigel Hitchin's 70th birthday, and to honour his far-reaching contributions to geometry and mathematical physics. These texts contain 29 articles by contributors to the conference and other distinguished mathematicians working in related areas, including three Fields Medallists. The articles cover a broad range of topics in differential, algebraic and symplectic geometry, and also in mathematical physics. These volumes will be of interest to researchers and graduate students in geometry and mathematical physics.
In this paper the authors introduce a general framework for the study of limits of relational structures and graphs in particular, which is based on a combination of model theory and (functional) analysis. The authors show how the various approaches to graph limits fit to this framework and that the authors naturally appear as “tractable cases” of a general theory. As an outcome of this, the authors provide extensions of known results. The authors believe that this puts these into a broader context. The second part of the paper is devoted to the study of sparse structures. First, the authors consider limits of structures with bounded diameter connected components and prove that in this c...
Original research and expert surveys on Riemann surfaces.
This volume consists of contributions by speakers at the AMS Special Session on Combinatorial and Statistical Group Theory held at New York University. Readers will find a variety of contributions, including survey papers on applications of group theory in cryptography, research papers on various aspects of statistical group theory, and papers on more traditional combinatorial group theory. The book is suitable for graduate students and research mathematicians interested in group theory and its applications to cryptography.