You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Quantitative approximation methods apply in many diverse fields of research-neural networks, wavelets, partial differential equations, probability and statistics, functional analysis, and classical analysis to name just a few. For the first time in book form, Quantitative Approximations provides a thorough account of all of the significant developments in the area of contemporary quantitative mathematics. It offers readers the unique opportunity of approaching the field under the guidance of an expert. Among the book's outstanding features is the inclusion of the introductory chapter that summarizes the primary and most useful results. This section serves not only as a more detailed table of contents for those new to an area of application, but also as a quick reference for more seasoned researchers. The author describes all of the pertinent mathematical entities precisely and concretely. His approach and proofs are straightforward and constructive, making Quantitative Approximations accessible and valuable to researchers and graduate students alike.
In this book the author presents the Opial, Poincaré, Sobolev, Hilbert, and Ostrowski fractional differentiation inequalities. Results for the above are derived using three different types of fractional derivatives, namely by Canavati, Riemann-Liouville and Caputo. The univariate and multivariate cases are both examined. Each chapter is self-contained. The theory is presented systematically along with the applications. The application to information theory is also examined. This monograph is suitable for researchers and graduate students in pure mathematics. Applied mathematicians, engineers, and other applied scientists will also find this book useful.
We study in Part I of this monograph the computational aspect of almost all moduli of continuity over wide classes of functions exploiting some of their convexity properties. To our knowledge it is the first time the entire calculus of moduli of smoothness has been included in a book. We then present numerous applications of Approximation Theory, giving exact val ues of errors in explicit forms. The K-functional method is systematically avoided since it produces nonexplicit constants. All other related books so far have allocated very little space to the computational aspect of moduli of smoothness. In Part II, we study/examine the Global Smoothness Preservation Prop erty (GSPP) for almost a...
This monograph is the r st in Fuzzy Approximation Theory. It contains mostly the author s research work on fuzziness of the last ten years and relies a lot on [10]-[32] and it is a natural outgrowth of them. It belongs to the broader area of Fuzzy Mathematics. Chapters are self-contained and several advanced courses can be taught out of this book. We provide lots of applications but always within the framework of Fuzzy Mathematics. In each chapter is given background and motivations. A c- plete list of references is provided at the end. The topics covered are very diverse. In Chapter 1 we give an extensive basic background on Fuzziness and Fuzzy Real Analysis, as well a complete description of the book. In the following Chapters 2,3 we cover in deep Fuzzy Di?erentiation and Integ- tion Theory, e.g. we present Fuzzy Taylor Formulae. It follows Chapter 4 on Fuzzy Ostrowski Inequalities. Then in Chapters 5, 6 we present results on classical algebraic and trigonometric polynomial Fuzzy Approximation.
Knowledge can be modeled and computed using computational mathematical methods, then lead to real world conclusions. The strongly related to that Computational Analysis is a very large area with lots of applications. This monograph includes a great variety of topics of Computational Analysis. We present: probabilistic wavelet approximations, constrained abstract approximation theory, shape preserving weighted approximation, non positive approximations to definite integrals, discrete best approximation, approximation theory of general Picard singular operators including global smoothness preservation property, fractional singular operators. We also deal with non-isotropic general Picard singu...
This monograph presents univariate and multivariate classical analyses of advanced inequalities. This treatise is a culmination of the author's last thirteen years of research work. The chapters are self-contained and several advanced courses can be taught out of this book. Extensive background and motivations are given in each chapter with a comprehensive list of references given at the end. The topics covered are wide-ranging and diverse. Recent advances on Ostrowski type inequalities, Opial type inequalities, Poincare and Sobolev type inequalities, and HardyOpial type inequalities are examined. Works on ordinary and distributional Taylor formulae with estimates for their remainders and ap...
In this monograph, the author presents univariate and multivariate probabilistic inequalities with coverage on basic probabilistic entities like expectation, variance, moment generating function and covariance. These are built on the recent classical form of real analysis inequalities which are also discussed in full details. This treatise is the culmination and crystallization of the author's last two decades of research work in related discipline. Each of the chapters is self-contained and a few advanced courses can be taught out of this book. Extensive background and motivations for specific topics are given in each chapter. A very extensive list of references is also provided at the end....
Working computationally in applied mathematics is the very essence of dealing with real-world problems in science and engineering. Approximation theory-on the borderline between pure and applied mathematics- has always supplied some of the most innovative ideas, computational methods, and original approaches to many types of problems. The f
In this book, we introduce the parametrized, deformed and general activation function of neural networks. The parametrized activation function kills much less neurons than the original one. The asymmetry of the brain is best expressed by deformed activation functions. Along with a great variety of activation functions, general activation functions are also engaged. Thus, in this book, all presented is original work by the author given at a very general level to cover a maximum number of different kinds of neural networks: giving ordinary, fractional, fuzzy and stochastic approximations. It presents here univariate, fractional and multivariate approximations. Iterated sequential multi-layer approximations are also studied. The functions under approximation and neural networks are Banach space valued.
This book presents generalized Caputo fractional Ostrowski and Grüss-type inequalities involving several Banach algebra valued functions. Furthermore, the author gives generalized Canavati fractional Ostrowski, Opial, Grüss, and Hilbert-Pachpatte-type inequalities for multiple Banach algebra valued functions. By applying the p-Schatten norms over the von Neumann–Schatten classes, the author produces the analogous refined and interesting inequalities. The author provides many applications. This book’s results are expected to find applications in many areas of pure and applied mathematics, especially in fractional inequalities and fractional differential equations. Other interesting applications are in applied sciences like geophysics, physics, chemistry, economics, and engineering. This book is appropriate for researchers, graduate students, practitioners, and seminars of the above disciplines, also to be in all science and engineering libraries.