Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Elliptic Mixed, Transmission and Singular Crack Problems
  • Language: en
  • Pages: 782

Elliptic Mixed, Transmission and Singular Crack Problems

Mixed, transmission, or crack problems belong to the analysis of boundary value problems on manifolds with singularities. The Zaremba problem with a jump between Dirichlet and Neumann conditions along an interface on the boundary is a classical example. The central theme of this book is to study mixed problems in standard Sobolev spaces as well as in weighted edge spaces where the interfaces are interpreted as edges. Parametrices and regularity of solutions are obtained within a systematic calculus of boundary value problems on manifolds with conical or edge singularities. This calculus allows singularities on the interface and homotopies between mixed and crack problems. Additional edge con...

Cohomological Theory of Crystals Over Function Fields
  • Language: en
  • Pages: 200

Cohomological Theory of Crystals Over Function Fields

This book develops a new cohomological theory for schemes in positive characteristic $p$ and it applies this theory to give a purely algebraic proof of a conjecture of Goss on the rationality of certain $L$-functions arising in the arithmetic of function fields. These $L$-functions are power series over a certain ring $A$, associated to any family of Drinfeld $A$-modules or, more generally, of $A$-motives on a variety of finite type over the finite field $\mathbb{F}_p$. By analogy to the Weil conjecture, Goss conjectured that these $L$-functions are in fact rational functions. In 1996 Taguchi and Wan gave a first proof of Goss's conjecture by analytic methods a la Dwork. The present text int...

Nonlinear Potential Theory on Metric Spaces
  • Language: en
  • Pages: 422

Nonlinear Potential Theory on Metric Spaces

The $p$-Laplace equation is the main prototype for nonlinear elliptic problems and forms a basis for various applications, such as injection moulding of plastics, nonlinear elasticity theory, and image processing. Its solutions, called p-harmonic functions, have been studied in various contexts since the 1960s, first on Euclidean spaces and later on Riemannian manifolds, graphs, and Heisenberg groups. Nonlinear potential theory of p-harmonic functions on metric spaces has been developing since the 1990s and generalizes and unites these earlier theories. This monograph gives a unified treatment of the subject and covers most of the available results in the field, so far scattered over a large...

Tractability of Multivariate Problems: Standard information for functionals
  • Language: en
  • Pages: 684

Tractability of Multivariate Problems: Standard information for functionals

This is the second volume of a three-volume set comprising a comprehensive study of the tractability of multivariate problems. The second volume deals with algorithms using standard information consisting of function values for the approximation of linear and selected nonlinear functionals. An important example is numerical multivariate integration. The proof techniques used in volumes I and II are quite different. It is especially hard to establish meaningful lower error bounds for the approximation of functionals by using finitely many function values. Here, the concept of decomposable reproducing kernels is helpful, allowing it to find matching lower and upper error bounds for some linear...

Tractability of Multivariate Problems: Linear information
  • Language: en
  • Pages: 402

Tractability of Multivariate Problems: Linear information

Multivariate problems occur in many applications. These problems are defined on spaces of $d$-variate functions and $d$ can be huge--in the hundreds or even in the thousands. Some high-dimensional problems can be solved efficiently to within $\varepsilon$, i.e., the cost increases polynomially in $\varepsilon^{-1}$ and $d$. However, there are many multivariate problems for which even the minimal cost increases exponentially in $d$. This exponential dependence on $d$ is called intractability or the curse of dimensionality. This is the first volume of a three-volume set comprising a comprehensive study of the tractability of multivariate problems. It is devoted to tractability in the case of a...

Geometrisation of 3-manifolds
  • Language: en
  • Pages: 256

Geometrisation of 3-manifolds

The Geometrisation Conjecture was proposed by William Thurston in the mid 1970s in order to classify compact 3-manifolds by means of a canonical decomposition along essential, embedded surfaces into pieces that possess geometric structures. It contains the famous Poincaré Conjecture as a special case. In 2002, Grigory Perelman announced a proof of the Geometrisation Conjecture based on Richard Hamilton’s Ricci flow approach, and presented it in a series of three celebrated arXiv preprints. Since then there has been an ongoing effort to understand Perelman’s work by giving more detailed and accessible presentations of his ideas or alternative arguments for various parts of the proof. Thi...

The Statistical Mechanics of Quantum Lattice Systems
  • Language: en
  • Pages: 402

The Statistical Mechanics of Quantum Lattice Systems

Quantum statistical mechanics plays a major role in many fields such as thermodynamics, plasma physics, solid-state physics, and the study of stellar structure. While the theory of quantum harmonic oscillators is relatively simple, the case of anharmonic oscillators, a mathematical model of a localized quantum particle, is more complex and challenging. Moreover, infinite systems of interacting quantum anharmonic oscillators possess interesting ordering properties with respect to quantum stabilization. This book presents a rigorous approach to the statistical mechanics of such systems, in particular with respect to their actions on a crystal lattice. The text is addressed to both mathematicia...

Function Spaces and Wavelets on Domains
  • Language: en
  • Pages: 276

Function Spaces and Wavelets on Domains

Wavelets have emerged as an important tool in analyzing functions containing discontinuities and sharp spikes. They were developed independently in the fields of mathematics, quantum physics, electrical engineering, and seismic geology. Interchanges between these fields during the last ten years have led to many new wavelet applications such as image compression, turbulence, human vision, radar, earthquake prediction, and pure mathematics applications such as solving partial differential equations. This book develops a theory of wavelet bases and wavelet frames for function spaces on various types of domains. Starting with the usual spaces on Euclidean spaces and their periodic counterparts,...

Bases in Function Spaces, Sampling, Discrepancy, Numerical Integration
  • Language: en
  • Pages: 314

Bases in Function Spaces, Sampling, Discrepancy, Numerical Integration

The first chapters of this book deal with Haar bases, Faber bases and some spline bases for function spaces in Euclidean $n$-space and $n$-cubes. These are used in the subsequent chapters to study sampling and numerical integration preferably in spaces with dominating mixed smoothness. The subject of the last chapter is the symbiotic relationship between numerical integration and discrepancy, measuring the deviation of sets of points from uniformity. This book is addressed to graduate students and mathematicians who have a working knowledge of basic elements of function spaces and approximation theory and who are interested in the subtle interplay between function spaces, complexity theory and number theory (discrepancy).

Efficient Numerical Methods for Non-local Operators
  • Language: en
  • Pages: 452

Efficient Numerical Methods for Non-local Operators

Hierarchical matrices present an efficient way of treating dense matrices that arise in the context of integral equations, elliptic partial differential equations, and control theory. While a dense $n\times n$ matrix in standard representation requires $n^2$ units of storage, a hierarchical matrix can approximate the matrix in a compact representation requiring only $O(n k \log n)$ units of storage, where $k$ is a parameter controlling the accuracy. Hierarchical matrices have been successfully applied to approximate matrices arising in the context of boundary integral methods, to construct preconditioners for partial differential equations, to evaluate matrix functions, and to solve matrix e...