You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume is divided into three parts. Part I provides the foundations of the theory of modular representations. Special attention is drawn to the Brauer-Swan theory and the theory of Brauer characters. A detailed investigation of quadratic, symplectic and symmetric modules is also provided. Part II is devoted entirely to the Green theory: vertices and sources, the Green correspondence, the Green ring, etc. In Part III, permutation modules are investigated with an emphasis on the study of p-permutation modules and Burnside rings. The material is developed with sufficient attention to detail so that it can easily be read by the novice, although its chief appeal will be to specialists. A number of the results presented in this volume have almost certainly never been published before.
Group Representations Volume 1 Part B
This monograph adopts an operational and functional analytic approach to the following problem: given a short exact sequence (group extension) 1 → N → G → H → 1 of finite groups, describe the irreducible representations of G by means of the structure of the group extension. This problem has attracted many mathematicians, including I. Schur, A.H. Clifford, and G. Mackey and, more recently, M. Isaacs, B. Huppert, Y.G. Berkovich & E.M. Zhmud, and J.M.G. Fell & R.S. Doran. The main topics are, on the one hand, Clifford Theory and the Little Group Method (of Mackey and Wigner) for induced representations, and, on the other hand, Kirillov’s Orbit Method (for step-2 nilpotent groups of od...
An important monograph summarizing the development of a classification system of finite p-groups.
Many of the familiar integrable systems of equations are symmetry reductions of self-duality equations on a metric or on a Yang-Mills connection. For example, the Korteweg-de Vries and non-linear Schrodinger equations are reductions of the self-dual Yang-Mills equation. This book explores in detail the connections between self-duality and integrability, and also the application of twistor techniques to integrable systems. It supports two central theories: that the symmetries of self-duality equations provide a natural classification scheme for integrable systems; and that twistor theory provides a uniform geometric framework for the study of Backlund transformations, the inverse scattering method, and other such general constructions of integrability theory. The book will be useful to researchers and graduate students in mathematical physics.
Finite Coxeter groups and related structures arise naturally in several branches of mathematics such as the theory of Lie algebras and algebraic groups. The corresponding Iwahori-Hecke algebras are then obtained by a certain deformation process which have applications in the representation theory of groups of Lie type and the theory of knots and links. This book develops the theory of conjugacy classes and irreducible character, both for finite Coxeter groups and the associated Iwahori-Hecke algebras. Topics covered range from classical results to more recent developments and are clear and concise. This is the first book to develop these subjects both from a theoretical and an algorithmic point of view in a systematic way, covering all types of finite Coxeter groups.
Introduces and clarifies the basic theories of 12 structural concepts, offering a fundamental theory of groups, rings and other algebraic structures. Identifies essentials and describes interrelationships between particular theories. Selected classical theorems and results relevant to current research are proved rigorously within the theory of each structure. Throughout the text the reader is frequently prompted to perform integrated exercises of verification and to explore examples.
Super-fields are a class of totally ordered fields that are larger than the real line. They arise from quotients of the algebra of continuous functions on a compact space by a prime ideal, and generalize the well-known class of ultrapowers, and indeed the continuous ultrapowers. These fields are an important topic in their own right and have many surprising applications in analysis and logic. The authors introduce these exciting new fields to mathematicians, analysts, and logicians, including a natural generalization of the real line R, and resolve a number of open problems. After an exposition of the general theory of ordered fields and a careful proof of some classic theorems, including Kapansky's embedding, they establish important new results in Banach algebra theory, non-standard analysis, and model theory.
Rapid developments in multivariable spectral theory have led to important and fascinating results which also have applications in other mathematical disciplines. In this book, various concepts from function theory and complex analytic geometry are drawn together to give a new approach to concrete spectral computations and give insights into new developments in the spectral theory of linear operators. Classical results from cohomology theory of Banach algebras, multidimensional spectral theory, and complex analytic geometry have been freshly interpreted using the language of homological algebra. The advantages of this approach are illustrated by a variety of examples, unexpected applications, and conceptually new ideas that should stimulate further research among mathematicians.
This book provides an accessible introduction to the state of the art of representation theory of finite groups. Starting from a basic level that is summarized at the start, the book proceeds to cover topics of current research interest, including open problems and conjectures. The central themes of the book are block theory and module theory of group representations, which are comprehensively surveyed with a full bibliography. The individual chapters cover a range of topics within the subject, from blocks with cyclic defect groups to representations of symmetric groups. Assuming only modest background knowledge at the level of a first graduate course in algebra, this guidebook, intended for students taking first steps in the field, will also provide a reference for more experienced researchers. Although no proofs are included, end-of-chapter exercises make it suitable for student seminars.