You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
PREDICTING HEART FAILURE Predicting Heart Failure: Invasive, Non-Invasive, Machine Learning and Artificial Intelligence Based Methods focuses on the mechanics and symptoms of heart failure and various approaches, including conventional and modern techniques to diagnose it. This book also provides a comprehensive but concise guide to all modern cardiological practice, emphasizing practical clinical management in many different contexts. Predicting Heart Failure supplies readers with trustworthy insights into all aspects of heart failure, including essential background information on clinical practice guidelines, in-depth, peer-reviewed articles, and broad coverage of this fast-moving field. R...
This book is a single-source guide to nonlinearity and nonlinear techniques in energy harvesting, with a focus on vibration energy harvesters for micro and nanoscale applications. The authors demonstrate that whereas nonlinearity was avoided as an undesirable phenomenon in early energy harvesters, now it can be used as an essential part of these systems. Readers will benefit from an overview of nonlinear techniques and applications, as well as deeper insight into methods of analysis and modeling of energy harvesters, employing different nonlinearities. The role of nonlinearity due to different aspects of an energy harvester is discussed, including nonlinearity due to mechanical-to-electrical conversion, nonlinearity due to conditioning electronic circuits, nonlinearity due to novel materials (e.g., graphene), etc. Coverage includes tutorial introductions to MEMS and NEMS technology, as well as a wide range of applications, such as nonlinear oscillators and transducers for energy harvesters and electronic conditioning circuits for effective energy processing.
The book provides readers with a snapshot of recent research and industrial trends in field of industrial acoustics and vibration. Each chapter, accepted after a rigorous peer-review process, reports on a selected, original piece of work presented and discussed at the Third International Conference on Acoustics and Vibration (ICAV2021), which was organized by the Tunisian Association of Industrial Acoustics and Vibration (ATAVI) and held online on March 15-16, 2021, from Sfax, Tunisia. The contributions cover advances in both theory and practice in a variety of subfields, such as: smart materials and structures; fluid-structure interaction; structural acoustics as well as computational vibro-acoustics and numerical methods. Further topics include: engines control, noise identification, robust design, flow-induced vibration and many others. This book provides a valuable resource for both academics and professionals dealing with diverse issues in applied mechanics. By combining advanced theories with industrial issues, it is expected to facilitate communication and collaboration between different groups of researchers and technology users.
MEMS Linear and Nonlinear Statics and Dynamics presents the necessary analytical and computational tools for MEMS designers to model and simulate most known MEMS devices, structures, and phenomena. This book also provides an in-depth analysis and treatment of the most common static and dynamic phenomena in MEMS that are encountered by engineers. Coverage also includes nonlinear modeling approaches to modeling various MEMS phenomena of a nonlinear nature, such as those due to electrostatic forces, squeeze-film damping, and large deflection of structures. The book also: Includes examples of numerous MEMS devices and structures that require static or dynamic modeling Provides code for programs in Matlab, Mathematica, and ANSYS for simulating the behavior of MEMS structures Provides real world problems related to the dynamics of MEMS such as dynamics of electrostatically actuated devices, stiction and adhesion of microbeams due to electrostatic and capillary forces MEMS Linear and Nonlinear Statics and Dynamics is an ideal volume for researchers and engineers working in MEMS design and fabrication.
This book brings together investigations which combine theoretical and experimental results related to such systems as flexure hinges and compliant mechanisms for precision applications, the non-linear analytical modeling of compliant mechanisms, mechanical systems using compliance as a bipedal robot and reconfigurable tensegrity systems and micro-electro-mechanical systems (MEMS) as energy efficient micro-robots, microscale force compensation, magnetoelectric micro-sensors, acoustical actuators and the wafer bonding as a key technology for the MEMS fabrication. The volume gathers the contributions presented at the 6th Conference on Microactuators, Microsensors and Micromechanisms (MAMM), held in Hyderabad, India in December 2022. The aim of the conference was to provide a special opportunity for a know-how exchange and collaboration in various disciplines concerning systems pertaining to micro-technology. The conference was organized under the patronage of IFToMM (International Federation for the Promotion of Mechanism and Machine Science).
A complete guide to the tools and techniques for modeling, simulating, and optimizing SSFE processes and phenomena In Modeling, Simulation, and Optimization of Supercritical and Subcritical Fluid Extraction Processes, a team of expert chemical engineers delivers a comprehensive guide to the tools and techniques used to model supercritical and subcritical fluid extraction (SSFE) processes and phenomena. The book offers details on SSFE experiment management, as well as modeling and optimization of SSFE. The authors begin with a discussion of the fundamentals of SSFE and the necessary experimental techniques to validate the models. They also discuss process simulators, conventional optimization...
The application of Micro Electro Mechanical Systems (MEMS) in the biomedical field is leading to a new generation of medical devices. MEMS for biomedical applications reviews the wealth of recent research on fabrication technologies and applications of this exciting technology.The book is divided into four parts: Part one introduces the fundamentals of MEMS for biomedical applications, exploring the microfabrication of polymers and reviewing sensor and actuator mechanisms. Part two describes applications of MEMS for biomedical sensing and diagnostic applications. MEMS for in vivo sensing and electrical impedance spectroscopy are investigated, along with ultrasonic transducers, and lab-on-chi...
An understanable introduction to the theory of structural stability, useful for a wide variety of engineering disciplines, including mechanical, civil and aerospace.