You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Despite a number of books on biophotonics imaging for medical diagnostics and therapy, the field still lacks a comprehensive imaging book that describes state-of-the-art biophotonics imaging approaches intensively developed in recent years. Addressing this shortfall, Advanced Biophotonics: Tissue Optical Sectioning presents contemporary methods and
This book examines Dynamic Light Scattering (DLS) and its derivatives Laser Doppler Flowmetry (LDF), Diffusing Wave Spectroscopy (DWS), Laser Speckle Contrast Imaging (LSCI), and Doppler Optical Coherence Tomography (OCT) for characterizing particle motion in turbid mediums like suspensions and solutions. It focuses on non-invasive blood flow imaging in biological tissues, detailing technological advancements, practical applications, and inherent challenges. Essential for professionals in biomedical optics and medical fields, as well as physics and engineering students, the book highlights its use in brain, skin, and micro-circulation studies, providing key insights and practical guidance. Key Features: • Presents a deep dive into DLS and its derivative techniques. • Emphasizes practical applications, including brain blood flow monitoring, skin perfusion measurements, and micro-circulation characterization. • Delivers insights into the challenges and limitations associated with DLS-based blood flow imaging.
This book highlights the analysis of new azimuth-independent methods of Stokes polarimetry and Mueller-matrix reconstruction of distributions of optical anisotropy parameters using spatial-frequency filtering of manifestations of phase (linear and circular birefringence) and amplitude (linear and circular dichroism) anisotropy for diagnosing changes in the orientational-phase structure of fibrillar networks of histological sections of biological tissues and polycrystalline films of biological fluids.
This book highlights the results of numerical computer-aided smart methods as part of a comprehensive statistical, correlated, and fractal analysis of laser polarimetry. It includes a comprehensive approach to differentiation of lifelong or postmortem origin of injuries and determination of their antiquity based on the analysis of statistical and spatiotemporal frequency evolution of photometric, polarization, and phase parameters of laser images of histological sections of the skin of biomannequins. It discusses the relationship between the coordinate distributions of the intensity of laser images from skin tissues of biomannequins and the nature of its damage. It presents the analysis of r...
None
Advanced photonics methods for biomedical applications give researchers in universities and industries, and clinicians an overview of the novel tools for cancer diagnostics and treatment. This book provides researchers and professionals in the area of biomedical photonics with a toolbox of novel methodologies for biomedical applications, including health diagnostics, cancer detection, and treatment. It covers the theory, modeling, and design of each method, alongside their applications, fabrication, characterization, and measurements in clinical practice. A wide scope of concepts concerning innovative science and technologies of medicine will be covered, providing the readers with the latest...
This book focuses on polarization microscopy, a powerful optical tool used to study anisotropic properties in biomolecules, and its enormous potential to improve diagnostic tools for various biomedical research. The interaction of polarized light with normal and abnormal regions of tissue reveals structural information associated with its pathological condition. Diagnosis using conventional microscopy can be time-consuming, as pathologists require an hour to freeze and stain tissue slices from suspected patients. In comparison, polarization microscopy more quickly distinguishes abnormal tissue and provides better microstructural information of samples, even in the absence of staining. This b...
This book provides an essential overview of the basic principles of imaging modalities, accompanied by examples of their applications in modern clinical and associated pre-clinical studies. The monograph is based on the original results of investigation of the efficiency use of laser light and Mueller-matrix polarimetry approach for assessment of myocardial tissues towards confirmation the cause of death. A morphological analysis of necrotic changes in the myocardial tissue of patients that died due to heart attack, coronary heart disease and acute coronary insufficiency was carried out and the data and histological sections of the myocardium inspected utilizing Mueller-matrix mapping of tis...
This book highlights the first systematic synthesis of various research approaches in forensic medical diagnosis of the morphological and polycrystalline structure of human biological tissues and biological fluids. One of the global challenges in such diagnosis is the assessment of actual time of death. The relevance and objectivity of such studies are given by the innovative use of complex multifunctional methods using lasers and Mueller-matrix polarimetry, which is presented in this book. As a result, within the framework of the statistical, correlation and fractal approaches, diagnostic relationships were established between the time parameters of the transformation of the topographic structure of polarization-inhomogeneous microscopic images of biological preparations and necrotic changes in the morphological structure of biological tissues of the deceased. On this foundation, new forensic medicine criteria have been developed for objective determination of time of death.
This book describes the Optical Immersion Clearing method and its application to acquire information with importance for clinical practice and various fields of biomedical engineering. The method has proved to be a reliable means of increasing tissue transparency, allowing the investigator or surgeon to reach deeper tissue layers for improved imaging and laser surgery. This result is obtained by partial replacement of tissue water with an active optical clearing agent (OCA) that has a higher refractive index and is a better match for the refractive index of other tissue components. Natural tissue scattering is thereby reduced. An exponential increase in research using this method has occurre...