You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The book contains invited papers by well-known experts on a wide range of topics (economics, variational analysis, probability etc.) closely related to convexity and generalized convexity, and refereed contributions of specialists from the world on current research on generalized convexity and applications, in particular, to optimization, economics and operations research.
Various generalizations of convex functions have been introduced in areas such as mathematical programming, economics, management science, engineering, stochastics and applied sciences, for example. Such functions preserve one or more properties of convex functions and give rise to models which are more adaptable to real-world situations than convex models. Similarly, generalizations of monotone maps have been studied recently. A growing literature of this interdisciplinary field has appeared, and a large number of international meetings are entirely devoted or include clusters on generalized convexity and generalized monotonicity. The present book contains a selection of refereed papers presented at the 6th International Symposium on Generalized Convexity/Monotonicity, and aims to review the latest developments in the field.
This book constitutes the refereed proceedings of the 19th International Conference on Verification, Model Checking, and Abstract Interpretation, VMCAI 2018, held in Los Angeles, CA, USA, in January 2018.The 24 full papers presented together with the abstracts of 3 invited keynotes and 1 invited tutorial were carefully reviewed and selected from 43 submissions. VMCAI provides topics including: program verification, model checking, abstract interpretation, program synthesis, static analysis, type systems, deductive methods, program certification, decision procedures, theorem proving, program certification, debugging techniques, program transformation, optimization, and hybrid and cyber-physical systems.
The contributions appearing in this book give an overview of recent research done in optimization and related areas, such as optimal control, calculus of variations, and game theory. They do not only address abstract issues of optimization theory, but are also concerned with the modeling and computer resolution of specific optimization problems arising in industry and applied sciences.
This volume contains the proceedings of the workshop on Optimization Theory and Related Topics, held in memory of Dan Butnariu, from January 11-14, 2010, in Haifa, Israel. An active researcher in various fields of applied mathematics, Butnariu published over 80 papers. His extensive bibliography is included in this volume. The articles in this volume cover many different areas of Optimization Theory and its applications: maximal monotone operators, sensitivity estimates via Lyapunov functions, inverse Newton transforms, infinite-horizon Pontryagin principles, singular optimal control problems with state delays, descent methods for mixed variational inequalities, games on MV-algebras, ergodic convergence in subgradient optimization, applications to economics and technology planning, the exact penalty property in constrained optimization, nonsmooth inverse problems, Bregman distances, retraction methods in Banach spaces, and iterative methods for solving equilibrium problems. This volume will be of interest to both graduate students and research mathematicians.
None
There is currently an increasing demand for concurrent programs. Checking the correctness of concurrent programs is a complex task due to the interleavings of processes. Sometimes, violation of the correctness properties in such systems causes human or resource losses; therefore, it is crucial to check the correctness of such systems. Two main approaches to software analysis are testing and formal verification. Testing can help discover many bugs at a low cost. However, it cannot prove the correctness of a program. Formal verification, on the other hand, is the approach for proving program correctness. Model checking is a formal verification technique that is suitable for concurrent programs...
This book gathers papers presented at the 13th International Conference on Mesh Methods for Boundary-Value Problems and Applications, which was held in Kazan, Russia, in October 2020. The papers address the following topics: the theory of mesh methods for boundary-value problems in mathematical physics; non-linear mathematical models in mechanics and physics; algorithms for solving variational inequalities; computing science; and educational systems. Given its scope, the book is chiefly intended for students in the fields of mathematical modeling science and engineering. However, it will also benefit scientists and graduate students interested in these fields.