You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
"The main theme of the 1988 workshop, the 18th in this DARPA sponsored series of meetings on Image Understanding and Computer Vision, is to cover new vision techniques in prototype vision systems for manufacturing, navigation, cartography, and photointerpretation." P. v.
All biological systems with vision move about their environments and successfully perform many tasks. The same capabilities are needed in the world of robots. To that end, recent results in empirical fields that study insects and primates, as well as in theoretical and applied disciplines that design robots, have uncovered a number of the principles of navigation. To offer a unifying approach to the situation, this book brings together ideas from zoology, psychology, neurobiology, mathematics, geometry, computer science, and engineering. It contains theoretical developments that will be essential in future research on the topic -- especially new representations of space with less complexity ...
This book contains 31 papers carefully selected from among those presented at the 7th Scandinavian Conference on Image Analysis. The authors have extended their papers to give a more in-depth discussion of the theory, or of the experimental validation of the method they have proposed. The topics covered are current and wide-ranging and include both 2D- and 3D-vision, and low to high level vision.
This two-volume set LNCS 11662 and 11663 constitutes the refereed proceedings of the 16th International Conference on Image Analysis and Recognition, ICIAR 2019, held in Waterloo, ON, Canada, in August 2019. The 58 full papers presented together with 24 short and 2 poster papers were carefully reviewed and selected from 142 submissions. The papers are organized in the following topical sections: Image Processing; Image Analysis; Signal Processing Techniques for Ultrasound Tissue Characterization and Imaging in Complex Biological Media; Advances in Deep Learning; Deep Learning on the Edge; Recognition; Applications; Medical Imaging and Analysis Using Deep Learning and Machine Intelligence; Image Analysis and Recognition for Automotive Industry; Adaptive Methods for Ultrasound Beamforming and Motion Estimation.
The book focuses on original approaches intended to support the development of biologically inspired cognitive architectures. It bridges together different disciplines, from classical artificial intelligence to linguistics, from neuro- and social sciences to design and creativity, among others. The chapters, based on contributions presented at the Tenth Annual Meeting of the BICA Society, held in on August 15-18, 2019, in Seattle, WA, USA, discuss emerging methods, theories and ideas towards the realization of general-purpose humanlike artificial intelligence or fostering a better understanding of the ways the human mind works. All in all, the book provides engineers, mathematicians, psychologists, computer scientists and other experts with a timely snapshot of recent research and a source of inspiration for future developments in the broadly intended areas of artificial intelligence and biological inspiration.
Maps, as we know, help us find our way around. But they're also powerful tools for someone hoping to find you. Widely available in electronic and paper formats, maps offer revealing insights into our movements and activities, even our likes and dislikes. In Spying with Maps, the "mapmatician" Mark Monmonier looks at the increased use of geographic data, satellite imagery, and location tracking across a wide range of fields such as military intelligence, law enforcement, market research, and traffic engineering. Could these diverse forms of geographic monitoring, he asks, lead to grave consequences for society? To assess this very real threat, he explains how geospatial technology works, what...
Visual tracking is one of the fundamental problems in computer vision. Its numerous applications include robotics, autonomous driving, augmented reality and 3D reconstruction. In essence, visual tracking can be described as the problem of estimating the trajectory of a target in a sequence of images. The target can be any image region or object of interest. While humans excel at this task, requiring little effort to perform accurate and robust visual tracking, it has proven difficult to automate. It has therefore remained one of the most active research topics in computer vision. In its most general form, no prior knowledge about the object of interest or environment is given, except for the...