You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Lecture notes for graduates or researchers wishing to enter this modern field of research.
The theory of motives was created by Grothendieck in the 1960s as he searched for a universal cohomology theory for algebraic varieties. The theory of pure motives is well established as far as the construction is concerned. Pure motives are expected to h
The main goal of the CIME Summer School on "Algebraic Cycles and Hodge Theory" has been to gather the most active mathematicians in this area to make the point on the present state of the art. Thus the papers included in the proceedings are surveys and notes on the most important topics of this area of research. They include infinitesimal methods in Hodge theory; algebraic cycles and algebraic aspects of cohomology and k-theory, transcendental methods in the study of algebraic cycles.
This volume contains the proceedings of the Workshop on Motivic Homotopy Theory and Refined Enumerative Geometry, held from May 14–18, 2018, at the Universität Duisburg-Essen, Essen, Germany. It constitutes an accessible yet swift introduction to a new and active area within algebraic geometry, which connects well with classical intersection theory. Combining both lecture notes aimed at the graduate student level and research articles pointing towards the manifold promising applications of this refined approach, it broadly covers refined enumerative algebraic geometry.
Fifty years after it made the transition from mimeographed lecture notes to a published book, Armand Borel's Introduction aux groupes arithmétiques continues to be very important for the theory of arithmetic groups. In particular, Chapter III of the book remains the standard reference for fundamental results on reduction theory, which is crucial in the study of discrete subgroups of Lie groups and the corresponding homogeneous spaces. The review of the original French version in Mathematical Reviews observes that “the style is concise and the proofs (in later sections) are often demanding of the reader.” To make the translation more approachable, numerous footnotes provide helpful comments.
This book gives a unified, complete, and self-contained exposition of the main algebraic theorems of invariant theory for matrices in a characteristic free approach. More precisely, it contains the description of polynomial functions in several variables on the set of matrices with coefficients in an infinite field or even the ring of integers, invariant under simultaneous conjugation. Following Hermann Weyl's classical approach, the ring of invariants is described by formulating and proving (1) the first fundamental theorem that describes a set of generators in the ring of invariants, and (2) the second fundamental theorem that describes relations between these generators. The authors study both the case of matrices over a field of characteristic 0 and the case of matrices over a field of positive characteristic. While the case of characteristic 0 can be treated following a classical approach, the case of positive characteristic (developed by Donkin and Zubkov) is much harder. A presentation of this case requires the development of a collection of tools. These tools and their application to the study of invariants are exlained in an elementary, self-contained way in the book.
The main theme of the book is the nonlinear geometry of Banach spaces, and it considers various significant problems in the field. The present book is a commented transcript of the notes of the graduate-level topics course in nonlinear functional analysis given by the late Nigel Kalton in 2008. Nonlinear geometry of Banach spaces is a very active area of research with connections to theoretical computer science, noncommutative geometry, as well as geometric group theory. Nigel Kalton was the most influential and prolific contributor to the theory. Collected here are the topics that Nigel Kalton felt were significant for those first dipping a toe into the subject of nonlinear functional analysis and presents these topics in an accessible and concise manner. As well as covering some well-known topics, it also includes recent results discovered by Kalton and his collaborators which have not previously appeared in textbook form. A typical first-year course in functional analysis will provide sufficient background for readers of this book.
The theory of persistence modules originated in topological data analysis and became an active area of research in algebraic topology. This book provides a concise and self-contained introduction to persistence modules and focuses on their interactions with pure mathematics, bringing the reader to the cutting edge of current research. In particular, the authors present applications of persistence to symplectic topology, including the geometry of symplectomorphism groups and embedding problems. Furthermore, they discuss topological function theory, which provides new insight into oscillation of functions. The book is accessible to readers with a basic background in algebraic and differential topology.
The theory of motives began in the early 1960s when Grothendieck envisioned the existence of a "universal cohomology theory of algebraic varieties". The theory of noncommutative motives is more recent. It began in the 1980s when the Moscow school (Beilinson, Bondal, Kapranov, Manin, and others) began the study of algebraic varieties via their derived categories of coherent sheaves, and continued in the 2000s when Kontsevich conjectured the existence of a "universal invariant of noncommutative algebraic varieties". This book, prefaced by Yuri I. Manin, gives a rigorous overview of some of the main advances in the theory of noncommutative motives. It is divided into three main parts. The first...
The classical ℓp sequence spaces have been a mainstay in Banach spaces. This book reviews some of the foundational results in this area (the basic inequalities, duality, convexity, geometry) as well as connects them to the function theory (boundary growth conditions, zero sets, extremal functions, multipliers, operator theory) of the associated spaces ℓpA of analytic functions whose Taylor coefficients belong to ℓp. Relations between the Banach space ℓp and its associated function space are uncovered using tools from Banach space geometry, including Birkhoff-James orthogonality and the resulting Pythagorean inequalities. The authors survey the literature on all of this material, including a discussion of the multipliers of ℓpA and a discussion of the Wiener algebra ℓ1A. Except for some basic measure theory, functional analysis, and complex analysis, which the reader is expected to know, the material in this book is self-contained and detailed proofs of nearly all the results are given. Each chapter concludes with some end notes that give proper references, historical background, and avenues for further exploration.