You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Recent advances in plant genomics and molecular biology have revolutionized our understanding of plant genetics, providing new opportunities for more efficient and controllable plant breeding. Successful techniques require a solid understanding of the underlying molecular biology as well as experience in applied plant breeding. Bridging the gap between developments in biotechnology and its applications in plant improvement, Molecular Plant Breeding provides an integrative overview of issues from basic theories to their applications to crop improvement including molecular marker technology, gene mapping, genetic transformation, quantitative genetics, and breeding methodology.
Demonstrates how advances in plant chemical biology can translate to field applications With contributions from a team of leading researchers and pioneers in the field, this book explains how chemical biology is used as a tool to enhance our understanding of plant biology. Readers are introduced to a variety of chemical biology studies that have provided novel insights into plant physiology and plant cellular processes. Moreover, they will discover that chemical biology not only leads to a better understanding of the underlying mechanisms of plant biology, but also the development of practical applications. For example, the authors discuss small molecules that can be used to identify targets...
The book addresses the compelling demand for quantitative training in plant biology, including comparisons of the rate of processes, the size of structures and interactions among different processes, approached at different levels from molecules to the environment. Attention is paid to aspects of modern molecular biology and to modern biophysical treatments of classical transport and circulatory problems. This will allow the reader to become familiar with calculus as a tool to understand plant science. The book discusses specific problems covering six specific topics, and includes an additional section devoted to miscellaneous issues. It is also complemented by appendices describing units, conversion factors, formulae and data relevant to plant biology and to the relationship of plants with the environment.
The current growing interest of molecular biologists in plant hormone research is undoubtedly the most promising development of recent times. Many papers were presented during the 14th International Conference on Plant Growth Substances illustrating the impact of this new approach on our understanding of hormone-controlled processes. The specific character is the integrated study of plant growth regulation at all levels ranging from single molecules to the entire plant and its functioning in the environment. Hormones play an essential role in the regulation, but not an exclusive one. Other compounds and factors, such as Ca2+, for instance are often of equal relevance, because they may take part in the signal transduction pathway. Moreover, regulation of the regulator by non-hormonal factors is an essential part of any control mechanism. The present volume reflects the change in interest from plant growth substances to plant growth regulation.
1 A Leaf Cell Consists of Several Metabolic Compartments 2 The Use of Energy from Sunlight by Photosynthesis is the Basis of Life on Earth 3 Photosynthesis is an Electron Transport Process 4 ATP is Generated by Photosynthesis 5 Mitochondria are the Power Station of the Cell 6 The Calvin Cycle Catalyzes Photosynthetic CO2 Assimilation 7 In the Photorespiratory Pathway Phosphoglycolate Formed by the Oxygenase Activity of RubisCo is Recycled 8 Photosynthesis Implies the Consumption of Water 9 Polysaccharides are Storage and Transport Forms of Carbohydrates Produced by Photosynthesis 10Nitrate Assimilation is Essential for the Synthesis of Organic Matter 11 Nitrogen Fixation Enables the Nitrogen...
Antenna systems in phosynthetic procaryotes; Antenna systems in algae and higher plants; Bacterial reaction center; photosytem I.
This book provides all aspects of the physiology, stress responses and tolerance to abiotic stresses of the Brassicaceae plants. Different plant families have been providing food, fodder, fuel, medicine and other basic needs for the human and animal since the ancient time. Among the plant families, Brassicaceae has special importance for their agri-horticultural importance and multifarious uses apart from the basic needs. Interest understanding the response of Brassicaceae plants toward abiotic stresses is growing considering the economic importance and the special adaptive mechanisms. The knowledge needs to be translated into improved elite lines that can contribute to achieve food security. The physiological and molecular mechanisms acting on Brassicaceae introduced in this book are useful to students and researchers working on biology, physiology, environmental interactions and biotechnology of Brassicaceae plants.