You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Presents the technical aspects of IMRT, and the clinical aspects of planning and delivery. The volulme explores a practical approach for radiation oncologists and medical physicists initiating or expanding and IMRT program, the fundamental biology and physics of IMRT, a site-by-site review of IMRT techniques with clinical examples, and reviews of published outcome studies.
Image Guided Radiation Therapy (IGRT) is a true revolution in the field of radiation oncology. IGRT provides the unprecedented means of conforming does to the shape of the target tissues in 3-dimensions reducing the risk of complications thereby improving the quality of life of irradiated patients. Moreover, IGRT provides the means to deliver higher than conventional doses thus improving the chance of cure in these patients. Despite its established benefits, several barriers exist to the widespread clinical implementation of IGRT. In the past, great concerns existed regarding the large capital outlay needed for both software and hardware. This barrier is less relevant today given the increased reimbursements possible with IGRT. Today, the most significant barrier is education. IGRT is a fundamentally new approach to both treatment planning and delivery. Adoption of the IGRT approach entails new ways of thinking in regard to patient selection, treatment planning and quality assurance measures. Unfortunately, apart from a few University-based short courses, limited resources are available for the physician and physicist interested in learning IGRT.
Radioimmunotherapy, also known as systemic targeted radiation therapy, uses antibodies, antibody fragments, or compounds as carriers to guide radiation to the targets. It is a topic rapidly increasing in importance and success in treatment of cancer patients. This book represents a comprehensive amalgamation of the radiation physics, chemistry, radiobiology, tumor models, and clinical data for targeted radionuclide therapy. It outlines the current challenges and provides a glimpse at future directions. With significant advances in cell biology and molecular engineering, many targeting constructs are now available that will safely deliver these highly cytotoxic radionuclides in a targeted fashion. A companion website includes the full text and an image bank.
Therapeutic Applications of Monte Carlo Calculations in Nuclear Medicine examines the applications of Monte Carlo (MC) calculations in therapeutic nuclear medicine, from basic principles to computer implementations of software packages and their applications in radiation dosimetry and treatment planning. With chapters written by recognized authorit
Intraoperative radiotherapy (IORT) is a treatment delivery technique with reports starting in the early 20th century. There are numerous advantages of IORT in oncology including delivery of a tumoricidal radiation dose in a single treatment, direct visualization of the treatment area of interest, decreasing dose to surrounding tissues, among others. In this series we focus on the clinical application, radiobiology and physics of IORT with an emphasis on the Intrabeam system. As medicine and health care continue to evolve the new frontier of personalized medicine must continue to rigorously evaluate and implement technologies that limit costs and provide meaningful therapeutic benefit.
This book provides detailed, state-of-the-art information and guidelines on the latest developments, innovations, and clinical procedures in image-guided and adaptive radiation therapy. The first section discusses key methodological and technological issues in image-guided and adaptive radiation therapy, including use of implanted fiducial markers, management of respiratory motion, image-guided stereotactic radiosurgery and stereotactic body radiation therapy, three-dimensional conformal brachytherapy, target definition and localization, and PET/CT and biologically conformal radiation therapy. The second section provides practical clinical information on image-guided adaptive radiation therapy for cancers at all common anatomic sites and for pediatric cancers. The third section offers practical guidelines for establishing an effective image-guided adaptive radiation therapy program.
A FRESH EXAMINATION OF PRECISION MEDICINE'S INCREASINGLY PROMINENT ROLE IN THE FIELD OF ONCOLOGY Precision medicine takes into account each patient's specific characteristics and requirements to arrive at treatment plans that are optimized towards the best possible outcome. As the field of oncology continues to advance, this tailored approach is becoming more and more prevalent, channelling data on genomics, proteomics, metabolomics and other areas into new and innovative methods of practice. Precision Medicine in Oncology draws together the essential research driving the field forward, providing oncology clinicians and trainees alike with an illuminating overview of the technology and think...
None
High-energy charged particles represent a cutting-edge technique in radiation oncology. Protons and carbon ions are used in several centers all over the world for the treatment of different solid tumors. Typical indications are ocular malignancies, tumors of the base of the skull, hepatocellular carcinomas and various sarcomas. The physical characteristics of the charged particles (Bragg peak) allow sparing of much more normal tissues than it is possible using conventional X-rays, and for this reason all pediatric tumors are considered eligible for protontherapy. Ions heavier than protons also display special radiobiological characteristics, which make them effective against radioresistant a...
In radiation oncology as in many other specialties clinical trials are essential to investigate new therapy approaches. Usually, preparation for a prospective clinical trial is extremely time consuming until ethics approval is obtained. To test a new treatment usually many years pass before it can be implemented in the routine care. During that time, already new interventions emerge, new drugs appear on the market, technical & physical innovations are being implemented, novel biology driven concepts are translated into clinical approaches while we are still investigating the ones from years ago. Another problem is associated with molecular diagnostics and the growing amount of tumor specific...