You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Our view of plants is changing dramatically. Rather than being only slowly responding organisms, their signaling is often very fast and signals, both of endogenous and exogenous origin, spread throughout plant bodies rapidly. Higher plants coordinate and integrate their tissues and organs via sophisticated sensory systems, which sensitively screen both internal and external factors, feeding them information through both chemical and electrical systemic long-distance communication channels. This revolution in our understanding of higher plants started some twenty years ago with the discovery of systemin and rapid advances continue to be made. This volume captures the current ‘state of the art’ of this exciting topic in plant sciences.
The impact of global climate change on crop production has emerged as a major research priority during the past decade. Understanding abiotic stress factors such as temperature and drought tolerance and biotic stress tolerance traits such as insect pest and pathogen resistance in combination with high yield in plants is of paramount importance to counter climate change related adverse effects on the productivity of crops. In this multi-authored book, we present synthesis of information for developing strategies to combat plant stress. Our effort here is to present a judicious mixture of basic as well as applied research outlooks so as to interest workers in all areas of plant science. We trust that the information covered in this book would bridge the much-researched area of stress in plants with the much-needed information for evolving climate-ready crop cultivars to ensure food security in the future.
This book describes the development of genetic resources in amaranths, with a major focus on genomics, reverse, and forward genetics tools and strategies that have been developed for crop improvement. Amaranth is an ancient crop native to the New World. Interest in amaranths is being renewed, due to their adaptability, stress tolerance, and nutritional value. There are about 65 species in the genus, including Amaranthus caudatus L., A. cruentus L., and A. hypochondriacus L., which are primarily grown as protein-rich grains or pseudocereals. The genus also includes major noxious weeds (e.g., A. palmeri). The amaranths are within the Caryophyllales order and thus many species (e.g., A. tricolor) produce red (betacyanin) or yellow (betaxanthin) betalain pigments, which are chemically distinct from the anthocyanins responsible for red pigmentation in other plants. A. hypochondriacus, which shows disomic inheritance (2n = 32; n= 466 Mb), has been sequenced and annotated with 23,059 protein-coding genes. Additional members of the genus are now also been sequenced including weedy amaranths, other grain amaranths, and their putative progenitors.
"Williams had deep roots in Sussex Country, the most southern, most rural, and most socially conservative part of Delaware. The book examines Williams's involvement in the country's poultry industry from its beginnings during the 1920s through the turbulent World War II years when Sussex poultry producers tangled with federal government officials from the Office of Price Administration and the U.S. Army. The war years coincided with the maturation of poultry production in Sussex that brought the county's people into more complex and wide-ranging economic, social, and political interactions. It was in reaction to these events that John Williams decided to run for the U.S. Senate."--BOOK JACKET.
With more than 500 species distributed all around the Northern Hemisphere, the genus Quercus L. is a dominant element of a wide variety of habitats including temperate, tropical, subtropical and mediterranean forests and woodlands. As the fossil record reflects, oaks were usual from the Oligocene onwards, showing the high ability of the genus to colonize new and different habitats. Such diversity and ecological amplitude makes genus Quercus an excellent framework for comparative ecophysiological studies, allowing the analysis of many mechanisms that are found in different oaks at different level (leaf or stem). The combination of several morphological and physiological attributes defines the existence of different functional types within the genus, which are characteristic of specific phytoclimates. From a landscape perspective, oak forests and woodlands are threatened by many factors that can compromise their future: a limited regeneration, massive decline processes, mostly triggered by adverse climatic events or the competence with other broad-leaved trees and conifer species. The knowledge of all these facts can allow for a better management of the oak forests in the future.
History of the Town of Duxbury, Massachusetts, With Genealogical Registers by Justin Winsor, first published in 1849, is a rare manuscript, the original residing in one of the great libraries of the world. This book is a reproduction of that original, which has been scanned and cleaned by state-of-the-art publishing tools for better readability and enhanced appreciation. Restoration Editors' mission is to bring long out of print manuscripts back to life. Some smudges, annotations or unclear text may still exist, due to permanent damage to the original work. We believe the literary significance of the text justifies offering this reproduction, allowing a new generation to appreciate it.
Mycorrhizal symbioses are central to the multitrophic interactions that impact plant productivity, competitiveness and survival. This book integrates present-day knowledge from well-known research groups on some of the topics which are at the forefront of mycorrhizal research. Topics include the cell programmes that drive mycorrhiza formation and function, the processes sustaining symbiotic mutualism, stress response mechanisms in mycorrhizal symbionts, and the diversity and ecological impacts of mycorrhizal systems. The efficient management of mycorrhizal systems has the potential to support the sustainable production of quality foods while ensuring environmental quality for future generations.
Recent years have brought an upsurge of interest in the study of arbuscular mycorrhizal (AM) fungi, partly due to the realization that the effective utilization of these symbiotic soil fungi is likely to be essential in sustainable agriculture. Impressive progress has been made during the last decade in the study of this symbiosis largely as a result of increasing exploitation of molecular tools. Although early emphasis was placed on the use of molecular tools to study physiological processes triggered by the symbiosis, such as expression of symbiosis-specific polypeptides and modulation of host defences, other applications await. It was obvious to us that gathering leaders in the field to s...