You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The main purpose of the present volume is to give a survey of some of the most significant achievements obtained by topological methods in nonlin ear analysis during the last three decades. It is intended, at least partly, as a continuation of Topological Nonlinear Analysis: Degree, Singularity and Varia tions, published in 1995. The survey articles presented are concerned with three main streams of research, that is topological degree, singularity theory and variational methods, They reflect the personal taste of the authors, all of them well known and distinguished specialists. A common feature of these articles is to start with a historical introduction and conclude with recent results, g...
The articles in this proceedings volume reflect the current trends in the theory of approximation, optimization and mathematical economics, and include numerous applications. The book will be of interest to researchers and graduate students involved in functional analysis, approximation theory, mathematical programming and optimization, game theory, mathematical finance and economics.
This book is the first easy-to-read text on nonsmooth optimization (NSO, not necessarily differentiable optimization). Solving these kinds of problems plays a critical role in many industrial applications and real-world modeling systems, for example in the context of image denoising, optimal control, neural network training, data mining, economics and computational chemistry and physics. The book covers both the theory and the numerical methods used in NSO and provide an overview of different problems arising in the field. It is organized into three parts: 1. convex and nonconvex analysis and the theory of NSO; 2. test problems and practical applications; 3. a guide to NSO software. The book is ideal for anyone teaching or attending NSO courses. As an accessible introduction to the field, it is also well suited as an independent learning guide for practitioners already familiar with the basics of optimization.
This volume is a selection of contributions offered by friends, collaborators, past students in memory of Enrico Magenes. The first part gives a wide historical perspective of Magenes' work in his 50-year mathematical career; the second part contains original research papers, and shows how ideas, methods, and techniques introduced by Magenes and his collaborators still have an impact on the current research in Mathematics.
Comprehensive introduction to nonlinear elasticity for graduates and researchers, covering new developments in the field.
Introduces applied mathematicians and graduate students to an original relaxation method based on a continuous extension of various optimization problems relating to convex compactification; it can be applied to problems in optimal control theory, the calculus of variations, and non-cooperative game theory. Reviews the background and summarizes the general theory of convex compactifications, then uses it to obtain convex, locally compact envelopes of the Lebesague and Sobolev spaces involved in concrete problems. The nontrivial envelopes cover the classical Young measures as well as various generalizations of them, which can record the limit behavior of fast oscillation and concentration effects. Annotation copyrighted by Book News, Inc., Portland, OR
System Theory: Modeling, Analysis and Control contains thirty-three scientific papers covering a wide range of topics in systems and control. These papers have been contributed to a symposium organized to celebrate Sanjoy K. Mitter's 65th birthday. The following research topics are addressed: distributed parameter systems, stochastic control, filtering and estimation, optimization and optimal control, image processing and vision, hierarchical systems and hybrid control, nonlinear systems, and linear systems. Also included are three survey papers on optimization, nonlinear filtering, and nonlinear systems. Recent advances are reported on the behavioral approach to systems, the relationship be...
A collection of self contained, state-of-the-art surveys. The authors have made an effort to achieve readability for mathematicians and scientists from other fields, for this series of handbooks to be a new reference for research, learning and teaching.Partial differential equations represent one of the most rapidly developing topics in mathematics. This is due to their numerous applications in science and engineering on the one hand and to the challenge and beauty of associated mathematical problems on the other.Key features:- Self-contained volume in series covering one of the most rapid developing topics in mathematics.- 7 Chapters, enriched with numerous figures originating from numerical simulations.- Written by well known experts in the field.- Self-contained volume in series covering one of the most rapid developing topics in mathematics.- 7 Chapters, enriched with numerous figures originating from numerical simulations.- Written by well known experts in the field.
These notes consist of two parts: 1) Selected Topics in Geometry, New York University 1946, Notes by Peter Lax. 2) Lectures on Differential Geometry in the Large, Stanford University 1956, Notes by J. W. Gray. They are reproduced here with no essential change. Heinz Hopf was a mathematician who recognized important mathema tical ideas and new mathematical phenomena through special cases. In the simplest background the central idea or the difficulty of a problem usually becomes crystal clear. Doing geometry in this fashion is a joy. Hopf's great insight allows this approach to lead to serious ma thematics, for most of the topics in these notes have become the star ting-points of important fur...