Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Vectorization
  • Language: en
  • Pages: 453

Vectorization

Enables readers to develop foundational and advanced vectorization skills for scalable data science and machine learning and address real-world problems Offering insights across various domains such as computer vision and natural language processing, Vectorization covers the fundamental topics of vectorization including array and tensor operations, data wrangling, and batch processing. This book illustrates how the principles discussed lead to successful outcomes in machine learning projects, serving as concrete examples for the theories explained, with each chapter including practical case studies and code implementations using NumPy, TensorFlow, and PyTorch. Each chapter has one or two typ...

Implementing Reproducible Research
  • Language: en
  • Pages: 450

Implementing Reproducible Research

  • Type: Book
  • -
  • Published: 2018-12-14
  • -
  • Publisher: CRC Press

In computational science, reproducibility requires that researchers make code and data available to others so that the data can be analyzed in a similar manner as in the original publication. Code must be available to be distributed, data must be accessible in a readable format, and a platform must be available for widely distributing the data and code. In addition, both data and code need to be licensed permissively enough so that others can reproduce the work without a substantial legal burden. Implementing Reproducible Research covers many of the elements necessary for conducting and distributing reproducible research. It explains how to accurately reproduce a scientific result. Divided i...

Data Science Using Python and R
  • Language: en
  • Pages: 256

Data Science Using Python and R

Learn data science by doing data science! Data Science Using Python and R will get you plugged into the world’s two most widespread open-source platforms for data science: Python and R. Data science is hot. Bloomberg called data scientist “the hottest job in America.” Python and R are the top two open-source data science tools in the world. In Data Science Using Python and R, you will learn step-by-step how to produce hands-on solutions to real-world business problems, using state-of-the-art techniques. Data Science Using Python and R is written for the general reader with no previous analytics or programming experience. An entire chapter is dedicated to learning the basics of Python a...

Proceedings of the 8th Python in Science Conference
  • Language: en
  • Pages: 94

Proceedings of the 8th Python in Science Conference

  • Type: Book
  • -
  • Published: 2010-02-23
  • -
  • Publisher: Lulu.com

The proceedings of the 8th annual Python for Scientific Computing conference.

Dynamic System Modelling and Analysis with MATLAB and Python
  • Language: en
  • Pages: 340

Dynamic System Modelling and Analysis with MATLAB and Python

Dynamic System Modeling & Analysis with MATLAB & Python A robust introduction to the advanced programming techniques and skills needed for control engineering In Dynamic System Modeling & Analysis with MATLAB & Python: For Control Engineers, accomplished control engineer Dr. Jongrae Kim delivers an insightful and concise introduction to the advanced programming skills required by control engineers. The book discusses dynamic systems used by satellites, aircraft, autonomous robots, and biomolecular networks. Throughout the text, MATLAB and Python are used to consider various dynamic modeling theories and examples. The author covers a range of control topics, including attitude dynamics, attit...

Computational Modeling by Case Study
  • Language: en
  • Pages: 849

Computational Modeling by Case Study

Mathematical models power the modern world; they allow us to design safe buildings, investigate changes to the climate, and study the transmission of diseases through a population. However, all models are uncertain: building contractors deviate from the planned design, humans impact the climate unpredictably, and diseases mutate and change. Modern advances in mathematics and statistics provide us with techniques to understand and quantify these sources of uncertainty, allowing us to predict and design with confidence. This book presents a comprehensive treatment of uncertainty: its conceptual nature, techniques to quantify uncertainty, and numerous examples to illustrate sound approaches. Several case studies are discussed in detail to demonstrate an end-to-end treatment of scientific modeling under uncertainty, including framing the problem, building and assessing a model, and answering meaningful questions. The book illustrates a computational approach with the Python package Grama, presenting fully reproducible examples that students and practitioners can quickly adapt to their own problems.

Essays On Trading Strategy
  • Language: en
  • Pages: 217

Essays On Trading Strategy

This book directly focuses on finding optimal trading strategies in the real world and supports that with a well-defined theoretical foundation that allows trading strategy problems to be solved. Critically, it also delivers a menu of actual solutions that can be applied by traders with various risk profiles and objectives in markets that exhibit substantial tail risk. It shows how the Markowitz approach leads to excessive risk taking, and trader underperformance, in the real world. It summarizes the key features of Utility Theory, the deficiencies of the Sharpe Ratio as a statistic, and develops an optimal decision theory with fully developed examples for both 'Normal' and leptokurtotic distributions.

Multi-User Gesture Recognition with Radar Technology
  • Language: en
  • Pages: 164

Multi-User Gesture Recognition with Radar Technology

The aim of this work is the development of a Radar system for consumer applications. It is capable of tracking multiple people in a room and offers a touchless human-machine interface for purposes that range from entertainment to hygiene.

The Practice of Reproducible Research
  • Language: en
  • Pages: 364

The Practice of Reproducible Research

The Practice of Reproducible Research presents concrete examples of how researchers in the data-intensive sciences are working to improve the reproducibility of their research projects. In each of the thirty-one case studies in this volume, the author or team describes the workflow that they used to complete a real-world research project. Authors highlight how they utilized particular tools, ideas, and practices to support reproducibility, emphasizing the very practical how, rather than the why or what, of conducting reproducible research. Part 1 provides an accessible introduction to reproducible research, a basic reproducible research project template, and a synthesis of lessons learned from across the thirty-one case studies. Parts 2 and 3 focus on the case studies themselves. The Practice of Reproducible Research is an invaluable resource for students and researchers who wish to better understand the practice of data-intensive sciences and learn how to make their own research more reproducible.

Data Science for Neuroimaging
  • Language: en
  • Pages: 392

Data Science for Neuroimaging

Data science methods and tools—including programming, data management, visualization, and machine learning—and their application to neuroimaging research As neuroimaging turns toward data-intensive discovery, researchers in the field must learn to access, manage, and analyze datasets at unprecedented scales. Concerns about reproducibility and increased rigor in reporting of scientific results also demand higher standards of computational practice. This book offers neuroimaging researchers an introduction to data science, presenting methods, tools, and approaches that facilitate automated, reproducible, and scalable analysis and understanding of data. Through guided, hands-on explorations...