You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume highlights recent advances in data science, including image processing and enhancement on large data, shape analysis and geometry processing in 2D/3D, exploration and understanding of neural networks, and extensions to atypical data types such as social and biological signals. The contributions are based on discussions from two workshops under Association for Women in Mathematics (AWM), namely the second Women in Data Science and Mathematics (WiSDM) Research Collaboration Workshop that took place between July 29 and August 2, 2019 at the Institute for Computational and Experimental Research in Mathematics (ICERM) in Providence, Rhode Island, and the third Women in Shape (WiSh) Re...
This volume reflects “New Trends in Shape Optimization” and is based on a workshop of the same name organized at the Friedrich-Alexander University Erlangen-Nürnberg in September 2013. During the workshop senior mathematicians and young scientists alike presented their latest findings. The format of the meeting allowed fruitful discussions on challenging open problems, and triggered a number of new and spontaneous collaborations. As such, the idea was born to produce this book, each chapter of which was written by a workshop participant, often with a collaborator. The content of the individual chapters ranges from survey papers to original articles; some focus on the topics discussed at the Workshop, while others involve arguments outside its scope but which are no less relevant for the field today. As such, the book offers readers a balanced introduction to the emerging field of shape optimization.
This handbook gathers together the state of the art on mathematical models and algorithms for imaging and vision. Its emphasis lies on rigorous mathematical methods, which represent the optimal solutions to a class of imaging and vision problems, and on effective algorithms, which are necessary for the methods to be translated to practical use in various applications. Viewing discrete images as data sampled from functional surfaces enables the use of advanced tools from calculus, functions and calculus of variations, and nonlinear optimization, and provides the basis of high-resolution imaging through geometry and variational models. Besides, optimization naturally connects traditional model...
This volume contains the proceedings of the AMS-EMS-SMF Special Session on Recent Advances in Diffeologies and Their Applications, held from July 18–20, 2022, at the Université de Grenoble-Alpes, Grenoble, France. The articles present some developments of the theory of diffeologies applied in a broad range of topics, ranging from algebraic topology and higher homotopy theory to integrable systems and optimization in PDE. The geometric framework proposed by diffeologies is known to be one of the most general approaches to problems arising in several areas of mathematics. It can adapt to many contexts without major technical difficulties and produce examples inaccessible by other means, in particular when studying singularities or geometry in infinite dimension. Thanks to this adaptability, diffeologies appear to have become an interesting and useful language for a growing number of mathematicians working in many different fields. Some articles in the volume also illustrate some recent developments of the theory, which makes it even more deep and useful.
Based on the second Women in Shape (WiSH) workshop held in Sirince, Turkey in June 2016, these proceedings offer the latest research on shape modeling and analysis and their applications. The 10 peer-reviewed articles in this volume cover a broad range of topics, including shape representation, shape complexity, and characterization in solving image-processing problems. While the first six chapters establish understanding in the theoretical topics, the remaining chapters discuss important applications such as image segmentation, registration, image deblurring, and shape patterns in digital fabrication. The authors in this volume are members of the WiSH network and their colleagues, and most were involved in the research groups formed at the workshop. This volume sheds light on a variety of shape analysis methods and their applications, and researchers and graduate students will find it to be an invaluable resource for further research in the area.
This book constitutes the refereed proceedings of the Third International Conference on Geometric Science of Information, GSI 2017, held in Paris, France, in November 2017. The 101 full papers presented were carefully reviewed and selected from 113 submissions and are organized into the following subjects: statistics on non-linear data; shape space; optimal transport and applications: image processing; optimal transport and applications: signal processing; statistical manifold and hessian information geometry; monotone embedding in information geometry; information structure in neuroscience; geometric robotics and tracking; geometric mechanics and robotics; stochastic geometric mechanics and Lie group thermodynamics; probability on Riemannian manifolds; divergence geometry; non-parametric information geometry; optimization on manifold; computational information geometry; probability density estimation; session geometry of tensor-valued data; geodesic methods with constraints; applications of distance geometry.
Many of the most challenging problems in the applied sciences involve non-differentiable structures as well as partial differential operators, thus leading to non-smooth distributed parameter systems. This edited volume aims to establish a theoretical and numerical foundation and develop new algorithmic paradigms for the treatment of non-smooth phenomena and associated parameter influences. Other goals include the realization and further advancement of these concepts in the context of robust and hierarchical optimization, partial differential games, and nonlinear partial differential complementarity problems, as well as their validation in the context of complex applications. Areas for which applications are considered include optimal control of multiphase fluids and of superconductors, image processing, thermoforming, and the formation of rivers and networks. Chapters are written by leading researchers and present results obtained in the first funding phase of the DFG Special Priority Program on Nonsmooth and Complementarity Based Distributed Parameter Systems: Simulation and Hierarchical Optimization that ran from 2016 to 2019.
The contributions in this volume give an insight into current research activities in Shape Optimization, Homogenization and Optimal Control performed in Africa, Germany and internationally. Seeds for collaboration can be found in the first four papers in the field of homogenization. Modelling and optimal control in partial differential equations is the topic of the next six papers, again mixed from Africa and Germany. Finally, new results in the field of shape optimization are discussed in the final international three papers. This workshop, held at the AIMS Center Senegal, March 13-16, 2017, has been supported by the Deutsche Forschungsgemeinschaft (DFG) and by the African Institute for Mathematical Sciences (AIMS) in Senegal, which is one of six centres of a pan-African network of centres of excellence for postgraduate education, research and outreach in mathematical sciences.
Machine generated contents note: 1. Introduction; Part I. Approach, Method and Concepts: 2. Explaining environmental performance; 3. Preferences in environmental politics; 4. The institutional settings in 21 OECD countries; Part II. Environmental Performance in 21 OECD Countries: 5. Measuring environmental performance; 6. Aggregating environmental performance data; Part III. Analysis: 7. Domestic politics; 8. International politics; 9. The nexus of domestic and international politics; 10. Conclusion