You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Mathematical logic grew out of philosophical questions regarding the foundations of mathematics, but logic has now outgrown its philosophical roots, and has become an integral part of mathematics in general. This book is designed for students who plan to specialize in logic, as well as for those who are interested in the applications of logic to other areas of mathematics. Used as a text, it could form the basis of a beginning graduate-level course. There are three main chapters: Set Theory, Model Theory, and Recursion Theory. The Set Theory chapter describes the set-theoretic foundations of all of mathematics, based on the ZFC axioms. It also covers technical results about the Axiom of Choi...
This book is designed for readers who know elementary mathematical logic and axiomatic set theory, and who want to learn more about set theory. The primary focus of the book is on the independence proofs. Most famous among these is the independence of the Continuum Hypothesis (CH); that is, there are models of the axioms of set theory (ZFC) in which CH is true, and other models in which CH is false. More generally, cardinal exponentiation on the regular cardinals can consistently be anything not contradicting the classical theorems of Cantor and König. The basic methods for the independence proofs are the notion of constructibility, introduced by Gödel, and the method of forcing, introduce...
None
This Handbook is an introduction to set-theoretic topology for students in the field and for researchers in other areas for whom results in set-theoretic topology may be relevant. The aim of the editors has been to make it as self-contained as possible without repeating material which can easily be found in standard texts. The Handbook contains detailed proofs of core results, and references to the literature for peripheral results where space was insufficient. Included are many open problems of current interest.In general, the articles may be read in any order. In a few cases they occur in pairs, with the first one giving an elementary treatment of a subject and the second one more advanced results. These pairs are: Hodel and Juhász on cardinal functions; Roitman and Abraham-Todorčević on S- and L-spaces; Weiss and Baumgartner on versions of Martin's axiom; and Vaughan and Stephenson on compactness properties.
Over the years, this book has become a standard reference and guide in the set theory community. It provides a comprehensive account of the theory of large cardinals from its beginnings and some of the direct outgrowths leading to the frontiers of contemporary research, with open questions and speculations throughout.
This exploration of a notorious mathematical problem is the work of the man who discovered the solution. Written by an award-winning professor at Stanford University, it employs intuitive explanations as well as detailed mathematical proofs in a self-contained treatment. This unique text and reference is suitable for students and professionals. 1966 edition. Copyright renewed 1994.
The Set Theory and Applications meeting at York University, Ontario, featured both contributed talks and a series of invited lectures on topics central to set theory and to general topology. These proceedings contain a selection of the resulting papers, mostly announcing new unpublished results.
Numbers imitate space, which is of such a di?erent nature —Blaise Pascal It is fair to date the study of the foundation of mathematics back to the ancient Greeks. The urge to understand and systematize the mathematics of the time led Euclid to postulate axioms in an early attempt to put geometry on a ?rm footing. With roots in the Elements, the distinctive methodology of mathematics has become proof. Inevitably two questions arise: What are proofs? and What assumptions are proofs based on? The ?rst question, traditionally an internal question of the ?eld of logic, was also wrestled with in antiquity. Aristotle gave his famous syllogistic s- tems, and the Stoics had a nascent propositional ...
This book bridges the gap between the many elementary introductions to set theory that are available today and the more advanced, specialized monographs. The authors have taken great care to motivate concepts as they are introduced. The large number of exercises included make this book especially suitable for self-study. Students are guided towards their own discoveries in a lighthearted, yet rigorous manner.
Set theory is the mathematics of infinity and part of the core curriculum for mathematics majors. This book blends theory and connections with other parts of mathematics so that readers can understand the place of set theory within the wider context. Beginning with the theoretical fundamentals, the author proceeds to illustrate applications to topology, analysis and combinatorics, as well as to pure set theory. Concepts such as Boolean algebras, trees, games, dense linear orderings, ideals, filters and club and stationary sets are also developed. Pitched specifically at undergraduate students, the approach is neither esoteric nor encyclopedic. The author, an experienced instructor, includes motivating examples and over 100 exercises designed for homework assignments, reviews and exams. It is appropriate for undergraduates as a course textbook or for self-study. Graduate students and researchers will also find it useful as a refresher or to solidify their understanding of basic set theory.