You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume of selected academic papers demonstrates the significance of the contribution to mathematics made by Manfredo P. do Carmo. Twice a Guggenheim Fellow and the winner of many prestigious national and international awards, the professor at the institute of Pure and Applied Mathematics in Rio de Janeiro is well known as the author of influential textbooks such as Differential Geometry of Curves and Surfaces. The area of differential geometry is the main focus of this selection, though it also contains do Carmo's own commentaries on his life as a scientist as well as assessment of the impact of his researches and a complete list of his publications. Aspects covered in the featured pape...
This is a collection of research papers published in various mathematical journals by friends, colleagues and former students of Professor Buchin Su in honor ofhis 80th birthday and 50th year of educational work.Professor Su was born in 1902 in Pingyang County, Zhejiang Province, People's Republic of China. He received the degree of Bachelor of Science inmathematics from Tohoku University, Sendai, Japan in 1927, and the degree ofDoctor of Science from the same university in 1931. After returning to Chinain 1931, he first taught at Zhejiang University in Hangzhou until 1952 when thewhole College of Science of Zhejiang University was merged into Fudan Universityin Shanghai. During his 50 years of educational work besides teaching, he alsohas taken up various administrative positions serving as Chairman, Dean, VicePresident and finally the President of Fudan University in 1978
The main topics covered in this volume are global differential geometry and its application to physics. Recent results in many areas are presented, including Yang-Mills fields, harmonic maps, geometry of submanifolds, spectral geometry, complex geometry and soliton aspects of nonlinear PDE arising from geometry and mathematical physics.
The first World Meeting for Women in Mathematics - (WM)2 - was a satellite event of the International Congress of Mathematicians (ICM) 2018 in Rio de Janeiro. With a focus on Latin America, the first (WM)2 brought together mathematicians from all over the world to celebrate women mathematicians, and also to reflect on gender issues in mathematics, challenges, initiatives, and perspectives for the future. Its activities were complemented by a panel discussion organized by the Committee for Women in Mathematics (CWM) of the International Mathematical Union (IMU) inside the ICM 2018 entitled "The gender gap in mathematical and natural sciences from a historical perspective”. This historical p...
The method of moving frames originated in the early nineteenth century with the notion of the Frenet frame along a curve in Euclidean space. Later, Darboux expanded this idea to the study of surfaces. The method was brought to its full power in the early twentieth century by Elie Cartan, and its development continues today with the work of Fels, Olver, and others. This book is an introduction to the method of moving frames as developed by Cartan, at a level suitable for beginning graduate students familiar with the geometry of curves and surfaces in Euclidean space. The main focus is on the use of this method to compute local geometric invariants for curves and surfaces in various 3-dimensio...
Sophie Germain taught herself mathematics by candlelight, huddled in her bedclothes. Ada Byron Lovelace anticipated aspects of general-purpose digital computing by more than a century. Cora Ratto de Sadosky advanced messages of tolerance and equality while sharing her mathematical talents with generations of students. This captivating book gives voice to women mathematicians from the late eighteenth century through to the present day. It documents the complex nature of the conditions women around the world have faced--and continue to face--while pursuing their careers in mathematics. The stories of the three women above and those of many more appear here, each one enlightening and inspiring....
This book is a unique selection of work by world-class experts exploring the latest developments in Hamiltonian partial differential equations and their applications. Topics covered within are representative of the field’s wide scope, including KAM and normal form theories, perturbation and variational methods, integrable systems, stability of nonlinear solutions as well as applications to cosmology, fluid mechanics and water waves. The volume contains both surveys and original research papers and gives a concise overview of the above topics, with results ranging from mathematical modeling to rigorous analysis and numerical simulation. It will be of particular interest to graduate students as well as researchers in mathematics and physics, who wish to learn more about the powerful and elegant analytical techniques for Hamiltonian partial differential equations.
None
In this book we study sprays and Finsler metrics. Roughly speaking, a spray on a manifold consists of compatible systems of second-order ordinary differential equations. A Finsler metric on a manifold is a family of norms in tangent spaces, which vary smoothly with the base point. Every Finsler metric determines a spray by its systems of geodesic equations. Thus, Finsler spaces can be viewed as special spray spaces. On the other hand, every Finsler metric defines a distance function by the length of minimial curves. Thus Finsler spaces can be viewed as regular metric spaces. Riemannian spaces are special regular metric spaces. In 1854, B. Riemann introduced the Riemann curvature for Riemanni...