You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book describes the history of Jordan algebras and describes in full mathematical detail the recent structure theory for Jordan algebras of arbitrary dimension due to Efim Zel'manov. Jordan algebras crop up in many surprising settings, and find application to a variety of mathematical areas. No knowledge is required beyond standard first-year graduate algebra courses.
Explores applications of Jordan theory to the theory of Lie algebras. After presenting the general theory of nonassociative algebras and of Lie algebras, the book then explains how properties of the Jordan algebra attached to a Jordan element of a Lie algebra can be used to reveal properties of the Lie algebra itself.
A3 & HIS ALGEBRA is the true story of a struggling young boy from Chicago's west side who grew to become a force in American mathematics. For nearly 50 years, A. A. Albert thrived at the University of Chicago, one of the world's top centers for algebra. His "pure research" in algebra found its way into modern computers, rocket guidance systems, cryptology, and quantum mechanics, the basic theory behind atomic energy calculations. This first-hand account of the life of a world-renowned American mathematician is written by Albert's daughter. Her memoir, which favors a general audience, offers a personal and revealing look at the multidimensional life of an academic who had a lasting impact on ...
This classic text and standard reference comprises all subjects of a first-year graduate-level course, including in-depth coverage of groups and polynomials and extensive use of categories and functors. 1989 edition.
The international New Math developments between about 1950 through 1980, are regarded by many mathematics educators and education historians as the most historically important development in curricula of the twentieth century. It attracted the attention of local and international politicians, of teachers, and of parents, and influenced the teaching and learning of mathematics at all levels—kindergarten to college graduate—in many nations. After garnering much initial support it began to attract criticism. But, as Bill Jacob and the late Jerry Becker show in Chapter 17, some of the effects became entrenched. This volume, edited by Professor Dirk De Bock, of Belgium, provides an outstandin...
The theory of Jordan algebras has played important roles behind the scenes of several areas of mathematics. Jacobson's book has long been the definitive treatment of the subject. It covers foundational material, structure theory, and representation theory for Jordan algebras. Of course, there are immediate connections with Lie algebras, which Jacobson details in Chapter 8. Of particular continuing interest is the discussion of exceptional Jordan algebras, which serve to explain the exceptional Lie algebras and Lie groups. Jordan algebras originally arose in the attempts by Jordan, von Neumann, and Wigner to formulate the foundations of quantum mechanics. They are still useful and important in modern mathematical physics, as well as in Lie theory, geometry, and certain areas of analysis.
This volume contains contributions from the conference on "Algebras, Representations and Applications" (Maresias, Brazil, August 26-September 1, 2007), in honor of Ivan Shestakov's 60th birthday. The collection of papers presented here is of great interest to graduate students and researchers working in the theory of Lie and Jordan algebras and superalgebras and their representations, Hopf algebras, Poisson algebras, Quantum Groups, Group Rings and other topics.
This collection contains all my published papers, both research and expository, that were published from 1934 to 1988. The research papers arranged in chronological order appear in Volume I and II and in the first part of Volume III. The expository papers, which are mainly reports presented at conferences, appear in chronological order in the last part of Volume III. Volume I covers the period 1910 to 1947, the year I moved to Yale, Volume II covers the period 1947 to 1965 when I became Chairman of the Department at Yale and Volume III covers the period from 1965 to 1989, which goes beyond my assumption of an emeritus status in 1981. I have divided the time interval covered in each volume in...