You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Extracellular Matrix (ECM) has been considered for a long time merely a scaffold sustaining cell and tissue function. Despite this simplistic view shared by many, nowadays ECM and their mechanic-physical and chemical characteristic acquired a progressive larger role actively regulating cell life: survival, proliferation, gene expression and differentiation. The interplay between cells and the ECM is continuously controlled at the cell level in a dynamic way. While cells synthesize the raw components of the ECM, this in turn impacts on cell function by providing chemical, topographical and mechanical hints. Such stimuli have been proven to control several aspects of cell function, including s...
Existing culture systems have a limited ability to reproduce the complicated and dynamic microenvironment of a functioning organ. To solve the issues of conventional culture techniques, multidisciplinary researchers, involving medical doctors, stem cell and developmental biology experts, engineers and physical scientists, have emerged to innovate methods and devices. A microfluidic organ-on-a-chip (μOOC) is a cell culture device, based on microfluidic technology, which contains continuously perfused chambers with cells to simulate organ-level physiology/pathology. The μOOC is not to build a whole living organ, but rather to synthesize minimal functional units that recapitulate organ-/tissu...
Frontiers in Bioengineering and Biotechnology has evolved to become an established go-to open access publishing option for multidisciplinary bioengineering and biotechnology research and in the process has grown considerably over the last few years achieving our first Journal Impact Factor 2018 in 2019. Here we are pleased to introduce this special eBook entitled ‘Highlights from Frontiers in Bioengineering and Biotechnology in 2020’ edited by our 10 Specialty Chief Editors of Frontiers in Bioengineering and Biotechnology aiming to support Frontiers’ strong community by recognizing highly deserving authors. The work presented here highlights the broad diversity of exciting research per...
The visualization of fluid flow has played a major role in the development of fluid dynamics and its applications, from the evolution of flight to tracking weather, and understanding the flow of blood. The Fluid Dynamics Division of the American Physical Society sponsors an annual competition for outstanding images of fluid flow. This volume includes a selection of winners from 1985 to the present. Each image is accompanied by some explanatory text, making the volume an important acquisition for anyone involved in fluid flow research.
This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact.
Treatise on Materials Science and Technology, Volume 25: Embrittlement of Engineering Alloys is an 11-chapter text that describes some situations that produce premature failure of several engineering alloys, including steels and nickel- and aluminum-base alloys. Chapters 1 to 3 consider situations where improper alloy composition, processing, and/or heat treatment can lead to a degradation of mechanical properties, even in the absence of an aggressive environment or an elevated temperature. Chapters 4 and 5 examine the effect of elevated temperatures on the mechanical properties of both ferrous and nonferrous alloys. Chapters 6 and 7 discuss the effects of corrosive environments on both stre...
This book is a compendium of the finest research in nanoplasmonic sensing done around the world in the last decade. It describes basic theoretical considerations of nanoplasmons in the dielectric environment, gives examples of the multitude of applications of nanoplasmonics in biomedical and chemical sensing, and provides an overview of future trends in optical and non-optical nanoplasmonic sensing. Specifically, readers are guided through both the fundamentals and the latest research in the two major fields nanoplasmonic sensing is applied to – bio- and chemo-sensing – then given the state-of-the-art recipes used in nanoplasmonic sensing research.
To provide an interdisciplinary readership with the necessary toolkit to work with micro- and nanofluidics, this book provides basic theory, fundamentals of microfabrication, advanced fabrication methods, device characterization methods and detailed examples of applications of nanofluidics devices and systems. Case studies describing fabrication of complex micro- and nanoscale systems help the reader gain a practical understanding of developing and fabricating such systems. The resulting work covers the fundamentals, processes and applied challenges of functional engineered nanofluidic systems for a variety of different applications, including discussions of lab-on-chip, bio-related applicat...