You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book presents the outcomes of the 12th International Workshop on the Algorithmic Foundations of Robotics (WAFR 2016). WAFR is a prestigious, single-track, biennial international meeting devoted to recent advances in algorithmic problems in robotics. Robot algorithms are an important building block of robotic systems and are used to process inputs from users and sensors, perceive and build models of the environment, plan low-level motions and high-level tasks, control robotic actuators, and coordinate actions across multiple systems. However, developing and analyzing these algorithms raises complex challenges, both theoretical and practical. Advances in the algorithmic foundations of rob...
Robotics is at the cusp of dramatic transformation. Increasingly complex robots with unprecedented autonomy are finding new applications, from medical surgery, to construction, to home services. Against this background, the algorithmic foundations of robotics are becoming more crucial than ever, in order to build robots that are fast, safe, reliable, and adaptive. Algorithms enable robots to perceive, plan, control, and learn. The design and analysis of robot algorithms raise new fundamental questions that span computer science, electrical engineering, mechanical engineering, and mathematics. These algorithms are also finding applications beyond robotics, for example, in modeling molecular m...
Algorithms are a fundamental component of robotic systems. Robot algorithms process inputs from sensors that provide noisy and partial data, build geometric and physical models of the world, plan high-and low-level actions at different time horizons, and execute these actions on actuators with limited precision. The design and analysis of robot algorithms raise a unique combination of questions from many elds, including control theory, computational geometry and topology, geometrical and physical modeling, reasoning under uncertainty, probabilistic algorithms, game theory, and theoretical computer science. The Workshop on Algorithmic Foundations of Robotics (WAFR) is a single-track meeting o...
This book contains selected contributions to WAFR, the highly-competitive meeting on the algorithmic foundations of robotics. They address the unique combination of questions that the design and analysis of robot algorithms inspires.
This book gathers the outcomes of the thirteenth Workshop on the Algorithmic Foundations of Robotics (WAFR), the premier event for showcasing cutting-edge research on algorithmic robotics. The latest WAFR, held at Universidad Politécnica de Yucatán in Mérida, México on December 9–11, 2018, continued this tradition. This book contains fifty-four papers presented at WAFR, which highlight the latest research on fundamental algorithmic robotics (e.g., planning, learning, navigation, control, manipulation, optimality, completeness, and complexity) demonstrated through several applications involving multi-robot systems, perception, and contact manipulation. Addressing a diverse range of topics in papers prepared by expert contributors, the book reflects the state of the art and outlines future directions in the field of algorithmic robotics.
The International Symposium of Robotics Research (ISRR) continues to be the premiere meeting of the International Foundation of Robotics Research (IFRR). The 13th International Symposium of Robotics Research took place Novemb3r 26-29, 2007, in Hiroshima, Japan, and was organized by the two editors of this book. This volume brings a collection of a broad range of topics in robotics. The content of these contributions provides a wide coverage of the current state of robotics research: the advances and challenges in its theoretical foundation and technology basis, and the developments in its traditional and novel areas of applications. Historically, the proceedings of the ISRR have featured ground-breaking work of the highest caliber, which influenced generations to come. The present volume promises to be no exception. The collection of scientific articles in this volume provides new insights to important problems in robotics, written by some of the leaders in the field.
This volume presents a collection of papers presented at the 16th International Symposium of Robotic Research (ISRR). ISRR is the biennial meeting of the International Foundation of Robotic Research (IFRR) and its 16th edition took place in Singapore over the period 16th to 19th December 2013. The ISRR is the longest running series of robotics research meetings and dates back to the very earliest days of robotics as a research discipline. This 16th ISRR meeting was held in the 30th anniversary year of the very first meeting which took place in Bretton Woods (New Hampshire, USA) in August 1983., and represents thirty years at the forefront of ideas in robotics research. As for the previous sy...
Robotics: Science and Systems VIII spans a wide spectrum of robotics, bringing together contributions from researchers working on the mathematical foundations of robotics, robotics applications, and analysis of robotics systems.
Algorithms are a fundamental component of robotic systems: they control or reason about motion and perception in the physical world. They receive input from noisy sensors, consider geometric and physical constraints, and operate on the world through imprecise actuators. The design and analysis of robot algorithms therefore raises a unique combination of questions in control theory, computational and differential geometry, and computer science. This book contains the proceedings from the 2006 Workshop on the Algorithmic Foundations of Robotics. This biannual workshop is a highly selective meeting of leading researchers in the field of algorithmic issues related to robotics. The 32 papers in this book span a wide variety of topics: from fundamental motion planning algorithms to applications in medicine and biology, but they have in common a foundation in the algorithmic problems of robotic systems.
Research on humanoid robots has been mostly with the aim of developing robots that can replace humans in the performance of certain tasks. Motion planning for these robots can be quite difficult, due to their complex kinematics, dynamics and environment. It is consequently one of the key research topics in humanoid robotics research and the last few years have witnessed considerable progress in the field. Motion Planning for Humanoid Robots surveys the remarkable recent advancement in both the theoretical and the practical aspects of humanoid motion planning. Various motion planning frameworks are presented in Motion Planning for Humanoid Robots, including one for skill coordination and lear...