You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume gathers peer-reviewed contributions that address a wide range of recent developments in the methodology and applications of data analysis and classification tools in micro and macroeconomic problems. The papers were originally presented at the 29th Conference of the Section on Classification and Data Analysis of the Polish Statistical Association, SKAD 2020, held in Sopot, Poland, September 7–9, 2020. Providing a balance between methodological contributions and empirical papers, the book is divided into five parts focusing on methodology, finance, economics, social issues and applications dealing with COVID-19 data. It is aimed at a wide audience, including researchers at universities and research institutions, graduate and doctoral students, practitioners, data scientists and employees in public statistical institutions.
This volume features a selection of contributions presented at the 2018 Wroclaw Conference in Finance, which cover a wide range of topics in finance and financial economics, e.g. financial markets; monetary policy; corporate, personal and public finance; and risk management and insurance. Reflecting the diversity and richness of research areas in the field, the papers discuss both fundamental and applied finance, and offer a detailed analysis of current financial-market problems, including specifics of the Polish and Central European markets. They also examine the results of advanced financial modeling. Accordingly, the proceedings offer a valuable resource for researchers at universities and policy institutions, as well as graduate students and practitioners in economics and finance at both private and government organizations.
The book presents a long list of useful methods for classification, clustering and data analysis. By combining theoretical aspects with practical problems, it is designed for researchers as well as for applied statisticians and will support the fast transfer of new methodological advances to a wide range of applications.
This volume gathers peer-reviewed contributions on data analysis, classification and related areas presented at the 28th Conference of the Section on Classification and Data Analysis of the Polish Statistical Association, SKAD 2019, held in Szczecin, Poland, on September 18–20, 2019. Providing a balance between theoretical and methodological contributions and empirical papers, it covers a broad variety of topics, ranging from multivariate data analysis, classification and regression, symbolic (and other) data analysis, visualization, data mining, and computer methods to composite measures, and numerous applications of data analysis methods in economics, finance and other social sciences. The book is intended for a wide audience, including researchers at universities and research institutions, graduate and doctoral students, practitioners, data scientists and employees in public statistical institutions.
Clustering and Classification, Data Analysis, Data Handling and Business Intelligence are research areas at the intersection of statistics, mathematics, computer science and artificial intelligence. They cover general methods and techniques that can be applied to a vast set of applications such as in business and economics, marketing and finance, engineering, linguistics, archaeology, musicology, biology and medical science. This volume contains the revised versions of selected papers presented during the 11th Biennial IFCS Conference and 33rd Annual Conference of the German Classification Society (Gesellschaft für Klassifikation - GfKl). The conference was organized in cooperation with the International Federation of Classification Societies (IFCS), and was hosted by Dresden University of Technology, Germany, in March 2009.
This volume presents a selection of peer-reviewed papers that address the latest developments in the methodology and applications of data analysis and classification tools to micro- and macroeconomic problems. The contributions were originally presented at the 30th Conference of the Section on Classification and Data Analysis of the Polish Statistical Association, SKAD 2021, held online in Poznań, Poland, September 8–10, 2021. Providing a balance between methodological and empirical studies, and covering a wide range of topics, the book is divided into five parts focusing on methods and applications in finance, economics, social issues and to COVID-19 data. The book is aimed at a wide audience, including researchers at universities and research institutions, PhD students, as well as practitioners, data scientists and employees in public statistical institutions.
"Data Analysis" in the broadest sense is the general term for a field of activities of ever-increasing importance in a time called the information age. It covers new areas with such trendy labels as, e.g., data mining or web mining as well as traditional directions emphazising, e.g., classification or knowledge organization. Leading researchers in data analysis have contributed to this volume and delivered papers on aspects ranging from scientific modeling to practical application. They have devoted their latest contributions to a book edited to honor a colleague and friend, Hans-Hermann Bock, who has been active in this field for nearly thirty years.
The volume presents innovations in data analysis and classification and gives an overview of the state of the art in these scientific fields and applications. Areas that receive considerable attention in the book are discrimination and clustering, data analysis and statistics, as well as applications in marketing, finance, and medicine. The reader will find material on recent technical and methodological developments and a large number of applications demonstrating the usefulness of the newly developed techniques.
The contributions gathered in this open access book focus on modern methods for data science and classification and present a series of real-world applications. Numerous research topics are covered, ranging from statistical inference and modeling to clustering and dimension reduction, from functional data analysis to time series analysis, and network analysis. The applications reflect new analyses in a variety of fields, including medicine, marketing, genetics, engineering, and education. The book comprises selected and peer-reviewed papers presented at the 17th Conference of the International Federation of Classification Societies (IFCS 2022), held in Porto, Portugal, July 19–23, 2022. Th...
Data analysis, machine learning and knowledge discovery are research areas at the intersection of computer science, artificial intelligence, mathematics and statistics. They cover general methods and techniques that can be applied to a vast set of applications such as web and text mining, marketing, medicine, bioinformatics and business intelligence. This volume contains the revised versions of selected papers in the field of data analysis, machine learning and knowledge discovery presented during the 36th annual conference of the German Classification Society (GfKl). The conference was held at the University of Hildesheim (Germany) in August 2012.