You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
None
This book provides a comprehensive and up-to-date introduction to the fundamental theory and applications of slow-neutron scattering.
None
None
None
The second edition of "Analytical Methods in Supramolecular Chemistry" comes in two volumes and covers a broad range of modern methods and techniques now used for investigating supramolecular systems, e. g. NMR spectroscopy, mass spectrometry, extraction methods, crystallography, single molecule spectroscopy, electrochemisty, and many more. In this second edition, tutorial inserts have been introduced, making the book also suitable as supplementary reading for courses on supramolecular chemistry. All chapters have been revised and updated and four new chapters have been added. A must-have handbook for Organic and Analytical Chemists, Spectroscopists, Materials Scientists, and Ph.D. Students ...
This text defines and covers different themes of post-processing techniques based on mechanical, chemical/electrochemical, and thermal energy. It will serve as an ideal reference text for senior undergraduate and graduate students in diverse engineering fields including manufacturing, industrial, aerospace, and mechanical. This book: covers the fundamentals and advancements in the post-processing techniques for additive manufacturing; explores methods/techniques for post-processing different types of materials used in additive manufacturing processes; gives insight into the process selection criteria for post-processing of additive manufactured products made from different types of materials; discusses hybrid processes used for post-processing of additive manufacturing parts; and highlights post-processing techniques for properties enhancement. The primary aim of the book is to give the readers a well-informed layout of the different post-processing techniques that range from employing mechanical energy to chemical, electrochemical, and thermal energy to perform the intended task.