You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume presents a mathematical development of a recent approach to the modeling and simulation of turbulent flows based on methods for the approximate solution of inverse problems. The resulting Approximate Deconvolution Models or ADMs have some advantages over more commonly used turbulence models – as well as some disadvantages. Our goal in this book is to provide a clear and complete mathematical development of ADMs, while pointing out the difficulties that remain. In order to do so, we present the analytical theory of ADMs, along with its connections, motivations and complements in the phenomenology of and algorithms for ADMs.
Scientific Computing for Scientists and Engineers is designed to teach undergraduate students relevant numerical methods and required fundamentals in scientific computing. Most problems in science and engineering require the solution of mathematical problems, most of which can only be done on a computer. Accurately approximating those problems requires solving differential equations and linear systems with millions of unknowns, and smart algorithms can be used on computers to reduce calculation times from years to minutes or even seconds. This book explains: How can we approximate these important mathematical processes? How accurate are our approximations? How efficient are our approximations? Scientific Computing for Scientists and Engineers covers: An introduction to a wide range of numerical methods for linear systems, eigenvalue problems, differential equations, numerical integration, and nonlinear problems; Scientific computing fundamentals like floating point representation of numbers and convergence; Analysis of accuracy and efficiency; Simple programming examples in MATLAB to illustrate the algorithms and to solve real life problems; Exercises to reinforce all topics.
This book is devoted to applications: differential equations, elements of special functions and differential geometry of curves and surfaces with a specific focus on visualization in Mathematica®. Discusses how Mathematica® can be used as an aid in solving mathematical problems and discovering a solution. A complete tutorial provides the background needed for understanding the examples and how to compute in Mathematica®.
This book treats Modelling of CFD problems, Numerical tools for PDE, and Scientific Computing and Systems of ODE for Epidemiology, topics that are closely related to the scientific activities and interests of Prof. William Fitzgibbon, Prof. Yuri Kuznetsov, and Prof. O. Pironneau, whose outstanding achievements are recognised in this volume. It contains 20 contributions from leading scientists in applied mathematics dealing with partial differential equations and their applications to engineering, ab-initio chemistry and life sciences. It includes the mathematical and numerical contributions to PDE for applications presented at the ECCOMAS thematic conference "Contributions to PDE for Applica...
The work shows, by means of examples coming from different corners of physics, how physical and mathematical questions can be answered using a computer. Starting with maps and neural networks, applications from Newton's mechanics described by ordinary differential equations come into the focus, like the computation of planetary orbits or classical molecular dynamics. A large part of the textbook is dedicated to deterministic chaos normally encountered in systems with sufficiently many degrees of freedom. Partial differential equations are studied considering (nonlinear) field theories like quantum mechanics, thermodynamics or fluid mechanics. In the second edition, a new chapter gives a deta...
Most environmental data involve a large degree of complexity and uncertainty. Environmental Data Analysis is created to provide modern quantitative tools and techniques designed specifically to meet the needs of environmental sciences and related fields. This book has an impressive coverage of the scope. Main techniques described in this book are models for linear and nonlinear environmental systems, statistical & numerical methods, data envelopment analysis, risk assessments and life cycle assessments. These state-of-the-art techniques have attracted significant attention over the past decades in environmental monitoring, modeling and decision making. Environmental Data Analysis explains ca...
This volume contains the proceedings of the Eighth International Conference on Scientific Computing and Applications, held April 1-4, 2012, at the University of Nevada, Las Vegas. The papers in this volume cover topics such as finite element methods, multiscale methods, finite difference methods, spectral methods, collocation methods, adaptive methods, parallel computing, linear solvers, applications to fluid flow, nano-optics, biofilms, finance, magnetohydrodynamics flow, electromagnetic waves, the fluid-structure interaction problem, and stochastic PDEs. This book will serve as an excellent reference for graduate students and researchers interested in scientific computing and its applications.
The year 2018 marked the 75th anniversary of the founding of Mathematics of Computation, one of the four primary research journals published by the American Mathematical Society and the oldest research journal devoted to computational mathematics. To celebrate this milestone, the symposium “Celebrating 75 Years of Mathematics of Computation” was held from November 1–3, 2018, at the Institute for Computational and Experimental Research in Mathematics (ICERM), Providence, Rhode Island. The sixteen papers in this volume, written by the symposium speakers and editors of the journal, include both survey articles and new contributions. On the discrete side, there are four papers covering top...
The second edition covers the introduction to the main mathematical tools of nonlinear functional analysis, which are also used in the study of concrete problems in economics, engineering, and physics. The new edition includes some new topics on Banach spaces of functions and measures and nonlinear analysis.
Numerical analysis deals with the development and analysis of algorithms for scientific computing, and is in itself a very important part of mathematics, which has become more and more prevalent across the mathematical spectrum. This book is an introduction to numerical methods for solving linear and nonlinear systems of equations as well as ordinary and partial differential equations, and for approximating curves, functions, and integrals.