You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
In recent years, there has been much synergy between the exciting areas of quantum information science and ultracold atoms. This volume, as part of the proceedings for the XCI session of Les Houches School of Physics (held for the first time outside Europe in Singapore) brings together experts in both fields. The theme of the school focused on two principal topics: quantum information science and ultracold atomic physics. The topics range from Bose Einstein Condensates to Degenerate Fermi Gases to fundamental concepts in Quantum Information Sciences, including some special topics on Quantum Hall Effects, Quantum Phase Transition, Interactions in Quantum Fluids, Disorder and Interference Phenomenoma, Trapped Ions and Atoms, and Quantum Optical Devices.
In July 2009, many experts in the mathematical modelling of biological sciences gathered in Les Houches for a 4-week summer school on the mechanics and physics of biological systems. The goal of the school was to present to students and researchers an integrated view of new trends and challenges in physical and mathematical aspects of biomechanics. While the scope for such a topic is very wide, we focused on problems where solid and fluid mechanics play a central role. The school covered both the general mathematical theory of mechanical biology in the context of continuum mechanics but also the specific modelling of particular systems in the biology of the cell, plants, microbes, and in physiology. These lecture notes are organised (as was the school) around five different main topics all connected by the common theme of continuum modelling for biological systems: Bio-fluidics, Bio-gels, Bio-mechanics, Bio-membranes, and Morphogenesis. These notes are not meant as a journal review of the topic but rather as a gentle tutorial introduction to the readers who want to understand the basic problematic in modelling biological systems from a mechanics perspective.
This book fully covers all aspects -- historical, theoretical, and experimental -- of the fields of quantum optomechanics and nanomechanics. These are essential parts of modern physics research, and relate to gravitational-wave detection (the subject of the Physics Nobel Prize 2017), and quantum information.
This primer builds the theory of spin glasses, starting with the real physical systems and experiments that inspired the theory.
The aim of the book is to familiarize the new generation of PhD students and postdoctoral fellows with the principles and methods of modern lattice field theory, which aims to resolve fundamental, non-perturbative questions about QCD without uncontrolled approximations.
This book is a collection of lectures given in July 2007 at the Les Houches Summer School on "String Theory and the Real World: From particle physics to astrophysics." - Provides a pedagogical introduction to topics in String Theory, and Cosmology - Addresses each topic from the basis to the most recent developments - Covers the lectures by internationally-renowned and leading experts
From molecular motors to bacteria, from crawling cells to large animals, active entities are found at all scales in the biological world. Active matter encompasses systems whose individual constituents irreversibly dissipate energy to exert self-propelling forces on their environment. Over the past twenty years, scientists have managed to engineer synthetic active particles in the lab, paving the way towards smart active materials. This book gathers a pedagogical set of lecture notes that cover topics in nonequilibrium statistical mechanics and active matter. These lecture notes stem from the first summer school on Active Matter delivered at the Les Houches school of Physics. The lectures covered four main research directions: collective behaviours in active-matter systems, passive and active colloidal systems, biophysics and active matter, and nonequilibrium statistical physics--from passive to active.
The topic of the CVIII session of the Ecole de Physique des Houches, held in July 2017, was Effective Field Theory in Particle Physics and Cosmology. Effective Field Theory (EFT) is a general method for describing quantum systems with multiple length scales in a tractable fashion. It allows to perform precise calculations in established models (such as the Standard Models of particle physics and cosmology), as well as to concisely parametrise possible effects from physics beyond the Standard Models. The goal of this school was to offer a broad introduction to the foundations and modern applications of Effective Field Theory in many of its incarnations. This is all the more important as there are preciously few textbooks covering the subject, none of them in a complete way. In this book, the lecturers present the concepts in a pedagogical way so that readers can adapt some of the latest developments to their own problems. The chapters cover almost all the lectures given at the school and will serve as an introduction to the topic and as a reference manual to students and researchers.
Presenting an up-to-date report on electronic glasses for researchers in condensed matter physics.
"In July 2009, many experts in the mathematical modeling of biological sciences gathered in Les Houches for a 4-week summer school on the mechanics and physics of biological systems. The goal of the school was to present to students and researchers an integrated view of new trends and challenges in physical and mathematical aspects of biomechanics. While the scope for such a topic is very wide, they focused on problems where solid and fluid mechanics play a central role. The school covered both the general mathematical theory of mechanical biology in the context of continuum mechanics but also the specific modeling of particular systems in the biology of the cell, plants, microbes, and in physiology. These lecture notes are organized (as was the school) around five different main topics all connected by the common theme of continuum modeling for biological systems: Bio-fluidics, Bio-gels, Bio-mechanics, Bio-membranes, and Morphogenesis. These notes are not meant as a journal review of the topic but rather as a gentle tutorial introduction to the readers who want to understand the basic problematic in modeling biological systems from a mechanics perspective"--