You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book contains a selection of more than 500 mathematical problems and their solutions from the PhD qualifying examination papers of more than ten famous American universities. The mathematical problems cover six aspects of graduate school mathematics: Algebra, Topology, Differential Geometry, Real Analysis, Complex Analysis and Partial Differential Equations. While the depth of knowledge involved is not beyond the contents of the textbooks for graduate students, discovering the solution of the problems requires a deep understanding of the mathematical principles plus skilled techniques. For students, this book is a valuable complement to textbooks. Whereas for lecturers teaching graduate school mathematics, it is a helpful reference.
The field of nonlinear hyperbolic problems has been expanding very fast over the past few years, and has applications - actual and potential - in aerodynamics, multifluid flows, combustion, detonics amongst other. The difficulties that arise in application are of theoretical as well as numerical nature. In fact, the papers in this volume of proceedings deal to a greater extent with theoretical problems emerging in the resolution of nonlinear hyperbolic systems than with numerical methods. The volume provides an excellent up-to-date review of the current research trends in this area.
This IMA Volume in Mathematics and its Applications MICROLOCAL ANALYSIS AND NONLINEAR WAVES is based on the proceedings of a workshop which was an integral part of the 1988- 1989 IMA program on "Nonlinear Waves". We thank Michael Beals, Richard Melrose and Jeffrey Rauch for organizing the meeting and editing this proceedings volume. We also take this opportunity to thank the National Science Foundation whose financial support made the workshop possible. A vner Friedman Willard Miller, Jr. PREFACE Microlocal analysis is natural and very successful in the study of the propagation of linear hyperbolic waves. For example consider the initial value problem Pu = f E e'(RHd), supp f C {t ;::: O} u = 0 for t
The book discusses some key scientific and technological developments in computational and applied partial differential equations. It covers many areas of scientific computing, including multigrid methods, image processing, finite element analysis and adaptive computations. It also covers software technology, algorithms and applications. Most papers are of research level, and are contributed by some well-known mathematicians and computer scientists. The book will be useful to engineers, computational scientists and graduate students.
This book provides a systematic introduction to the fundamental methods and techniques and the frontiers of — along with many new ideas and results on — infectious disease modeling, parameter estimation and transmission dynamics. It provides complementary approaches, from deterministic to statistical to network modeling; and it seeks viewpoints of the same issues from different angles, from mathematical modeling to statistical analysis to computer simulations and finally to concrete applications.
In the past few years there has been a fruitful exchange of expertise on the subject of partial differential equations (PDEs) between mathematicians from the People's Republic of China and the rest of the world. The goal of this collection of papers is to summarize and introduce the historical progress of the development of PDEs in China from the 1950s to the 1980s. The results presented here were mainly published before the 1980s, but, having been printed in the Chinese language, have not reached the wider audience they deserve. Topics covered include, among others, nonlinear hyperbolic equations, nonlinear elliptic equations, nonlinear parabolic equations, mixed equations, free boundary problems, minimal surfaces in Riemannian manifolds, microlocal analysis and solitons. For mathematicians and physicists interested in the historical development of PDEs in the People's Republic of China.
This is a collection of research papers published in various mathematical journals by friends, colleagues and former students of Professor Buchin Su in honor ofhis 80th birthday and 50th year of educational work.Professor Su was born in 1902 in Pingyang County, Zhejiang Province, People's Republic of China. He received the degree of Bachelor of Science inmathematics from Tohoku University, Sendai, Japan in 1927, and the degree ofDoctor of Science from the same university in 1931. After returning to Chinain 1931, he first taught at Zhejiang University in Hangzhou until 1952 when thewhole College of Science of Zhejiang University was merged into Fudan Universityin Shanghai. During his 50 years of educational work besides teaching, he alsohas taken up various administrative positions serving as Chairman, Dean, VicePresident and finally the President of Fudan University in 1978
This book considers evolution equations of hyperbolic and parabolic type. These equations are studied from a common point of view, using elementary methods, such as that of energy estimates, which prove to be quite versatile. The authors emphasize the Cauchy problem and present a unified theory for the treatment of these equations. In particular, they provide local and global existence results, as well as strong well-posedness and asymptotic behavior results for the Cauchy problem for quasi-linear equations. Solutions of linear equations are constructed explicitly, using the Galerkin method; the linear theory is then applied to quasi-linear equations, by means of a linearization and fixed-po...
This monograph is devoted to the theory and approximation by finite volume methods of nonlinear hyperbolic systems of conservation laws in one or two space variables. It follows directly a previous publication on hyperbolic systems of conservation laws by the same authors. Since the earlier work concentrated on the mathematical theory of multidimensional scalar conservation laws, this book will focus on systems and the theoretical aspects which are needed in the applications, such as the solution of the Riemann problem and further insights into more sophisticated problems, with special attention to the system of gas dynamics. This new edition includes more examples such as MHD and shallow water, with an insight on multiphase flows. Additionally, the text includes source terms and well-balanced/asymptotic preserving schemes, introducing relaxation schemes and addressing problems related to resonance and discontinuous fluxes while adding details on the low Mach number situation.