You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The International Linear Collider (ILC) is a mega-scale, technically complex project, requiring large financial resources and cooperation of thousands of scientists and engineers from all over the world. Such a big and expensive project has to be discussed publicly, and the planned goals have to be clearly formulated. This book advocates for the demand for the project, motivated by the current situation in particle physics. The natural and most powerful way of obtaining new knowledge in particle physics is to build a new collider with a larger energy. In this approach, the Large Hadron Collider (LHC) was created and is now operating at the world record center-of-mass energy of 13 TeV. Althou...
This workshop brought together for the first time accelerator experts as well as experimental and theoretical high energy physicists from all over the world to consider the physics potential of high energy linear electron-positron colliders. A wide variety of physics cases were presented ranging from precision tests of the top quark and electroweak gauge bosons to searches of the intermediate mass Higgs bosons and supersymmetric particles.
Collider experiments have become essential to studying elementary particles. In particular, lepton collisions such as e⁺e⁻ are ideal from both experimental and theoretical points of view, and are a unique means of probing the new energy region, sub-TeV to TeV. It is a common understanding that a next-generation e⁺e⁻ collider will have to be a linear machine that evades beam-energy losses due to synchrotron radiation. In this book, physics feasibilities at linear colliders are discussed in detail, taking into account the recent progress in high-energy physics.
The high energy electron-positron linear collider is expected to provide crucial clues to many of the fundamental questions of our time: What is the nature of electroweak symmetry breaking? Does a Standard Model Higgs boson exist, or does nature take the route of supersymmetry, technicolor or extra dimensions, or none of the foregoing? This invaluable book is a collection of articles written by experts on many of the most important topics which the linear collider will focus on. It is aimed primarily at graduate students but will undoubtedly be useful also to any active researcher on the physics of the next generation linear collider.
The high energy electronOCopositron linear collider is expected to provide crucial clues to many of the fundamental questions of our time: What is the nature of electroweak symmetry breaking? Does a Standard Model Higgs boson exist, or does nature take the route of supersymmetry, technicolor or extra dimensions, or none of the foregoing? This invaluable book is a collection of articles written by experts on many of the most important topics which the linear collider will focus on. It is aimed primarily at graduate students but will undoubtedly be useful also to any active researcher on the physics of the next generation linear collider."
After a historical consideration of the types and evolution of accelerators the physics of particle beams is provided in detail. Topics dealt with comprise linear and nonlinear beam dynamics, collective phenomena in beams, and interactions of beams with the surroundings. The design and principles of synchrotrons, circular and linear colliders, and of linear accelerators are discussed next. Also technological aspects of accelerators (magnets, RF cavities, cryogenics, power supply, vacuum, beam instrumentation, injection and extraction) are reviewed, as well as accelerator operation (parameter control, beam feedback system, orbit correction, luminosity optimization). After introducing the largest accelerators and colliders of their times the application of accelerators and storage rings in industry, medicine, basic science, and energy research is discussed, including also synchrotron radiation sources and spallation sources. Finally, cosmic accelerators and an outlook for the future are given.
After a historical consideration of the types and evolution of accelerators the physics of particle beams is provided in detail. Topics dealt with comprise linear and nonlinear beam dynamics, collective phenomena in beams, and interactions of beams with the surroundings. The design and principles of synchrotrons, circular and linear colliders, and of linear accelerators are discussed next. Also technological aspects of accelerators (magnets, RF cavities, cryogenics, power supply, vacuum, beam instrumentation, injection and extraction) are reviewed, as well as accelerator operation (parameter control, beam feedback system, orbit correction, luminosity optimization). After introducing the largest accelerators and colliders of their times the application of accelerators and storage rings in industry, medicine, basic science, and energy research is discussed, including also synchrotron radiation sources and spallation sources. Finally, cosmic accelerators and an outlook for the future are given.